Early Cerebellum Development Abnormality in Adult-Onset Spinocerebellar Ataxia Type 1

Written by Dr. Vitaliy V Bondar  Edited by Dr. Chandrakanth Edamakanti

Researchers for the first time identified that spinocerebellar ataxia type 1 (SCA1) may have roots in early cerebellar circuit malfunction.

Cartoon of a neuron
Artist representation of a neuron. Image courtesy of Pixabay

Since the discovery of the cause of SCA1, researchers have wondered: why does it take three to four decades of life for symptoms to reveal themselves? This late stage disease progression is surprising, given that early molecular changes are observed in many SCA1 animal models. Furthermore, this is true for many other neurodegenerative diseases (i.e., that molecular changes precede symptoms). Studying and understanding this delay in symptom onset may reveal potential treatment options to mitigate and slow down the progression of the disease.

The cerebellum is one of the most important brain regions for SCA1 research because it is responsible for the fine movement control that SCA1 patients have difficulty with. Moreover, the cerebellum is the brain region that degenerates the earliest in SCA1. Given that SCA1 symptoms strike late in adulthood, many scientists thought that there would not be any cellular changes during the cerebellum’s development (that is, early in SCA1 patients’ lives). However, Chandrakanth Edamakanti, a postdoctoral scientist in Puneet Opal’s laboratory at Northwestern University, has recently demonstrated that the stem cells in the cerebellum behave differently in SCA1. These stem cells, which exist in the cerebellum for the first three weeks after birth, help to complete cerebellar development by adding new neurons and supporting cells (known as glia). Dr. Edamakanti and colleagues have shown that, in SCA1, this process is disturbed, which likely contributes to Purkinje cell toxicity at later ages. This represents the first cellular and anatomical difference that has been seen in neurons prior to degeneration in SCA1. Other neurodegenerative diseases, including Alzheimer’s, Huntington’s and Parkinson’s, may also stem from such developmental defects that set the stage for later disease vulnerability.

Continue reading “Early Cerebellum Development Abnormality in Adult-Onset Spinocerebellar Ataxia Type 1”