Spotlight: The Truant Lab

Truant lab logo of a brain. "Bright minds fixing sick brains"

Principal Investigator: Dr. Ray Truant

Location: McMaster University, Hamilton, Ontario, Canada

Year Founded: 1999

What disease areas do you research?

  • SCA1
  • SCA7
  • Huntington’s Disease
  • Parkinson’s Disease

What models and techniques do you use?

  • Human cell biology
  • High content screening
  • Biophotonics
  • Microscopy

Research Focus

What is your research about?

We are looking into the role of oxidative DNA damage as a trigger to diseases like ataxia and neurodegeneration. We examine the roles of the disease proteins (ataxin-1, ataxin-7, etc,) and genes which modify or change disease that are involved with DNA damage repair.

Why do you do this research?

We are looking at what triggers the very first steps of disease. If we can understand this, we can design a treatment to stop it from happening in the first place.

Research team of 10 holding a sign which reads "We are Ataxia Aware"
Group picture of the Truant Laboratory celebrating International Ataxia Awareness Day 2019.

Fun Lab Fact

All our fridges in the laboratory are named after Game of Thrones characters! (We have several proud nerds in the lab)

For More Information, check out the Truant Lab Website!

We have an open lab notebook blog where our post-doctoral fellow Dr. Tam Maiuri post updates on her experiments in real-time! We plan to launch an ataxia open notebook in Winter 2021.


Written by Ray Truant, Edited by Celeste Suart

Finding New Off-Balance Protein Networks in SCA7

Written by Frida Niss Edited by Dr. Siddharth Nath

Can neurodegeneration in SCA7 in part be due to faulty calcium homeostasis in the cerebellum?

Polyglutamine diseases are caused by an increase in the length of CAG repeats within a specific gene. The mutation for spinocerebellar ataxia type 7 (SCA7) was discovered more than two decades ago, but many of the details surrounding how the mutation actually causes disease remain fuzzy. We know that the increased repeat length in the gene makes it difficult for the resulting protein to arrange or fold itself properly. We also know that the mutated protein binds to itself and to other proteins in an unusual way. It building up large deposits of seemingly useless debris in the cell, called ‘aggregates’. However, the exact pathways this leads to cell death, and subsequently neurodegeneration, is not completely clear.

There is currently research underway to directly target and inhibit the repeat proteins themselves. However, finding other pathways in the cell that are easier to target with medication is also a priority. In this research, Stoyas and her colleagues wanted to find out more about which cellular pathways are disturbed in the polyglutamine disease SCA7.

A pair of hands in plastics gloves writes down scientific findings on a chart. Beside the hands are racks of tubes with lables of different samples and dates collected.
A laboratory scientist documents research findings. Image courtesy of the National Institutes of Health on Flickr.
SCA7 mice have disordered productions of proteins that help balance ions concentrations

In SCA7, the protein that carries the mutation is Ataxin-7. Ataxin-7 participates in transcription through complexes of proteins that together can change some signalling particles on the DNA. Depending on what signalling particles are attached to a certain gene, the gene is either transcribed and made into a protein, or “silenced” and skipped over. In the case of Ataxin-7 and its complex, they work together to cause transcription of genes. One of the main theories of how a polyglutamine mutation can be toxic in Ataxin-7 is that the mutation disturbs Ataxin-7’s normal function within this transcription activating complex. Instead of being regular and orderly, ataxin-7 starts acting unpredictably. Some things that should be transcribed are not, some that shouldn’t be transcribed are.

Continue reading “Finding New Off-Balance Protein Networks in SCA7”

Snapshot: What does dominant ataxia mean?

Ataxias can occur due to a multitude of reasons. One way a patient might acquire ataxia is from an accident or an injury – not as a result of genetics. On the other hand, a patient could also inherit a specific mutation (a genetic defect, in other words) from one or both of their parents. In this case, the ataxia is called “hereditary.” Hereditary ataxias can be further classified as either “dominant” or “recessive.”

What is a dominantly-inherited disorder?

Most genes in our body have two copies: one that we inherit from our mother, and one that we inherit from our father. Dominantly-inherited disorders are diseases in which a mutation in just one copy of a gene is enough to cause disease. When both copies of a gene need to be mutated to cause symptoms, the disorder is known as “recessive” (learn more in the Snapshot on recessive ataxias). For a patient with a dominantly-inherited ataxia, this means that there is a 1-in-2 chance that their children will inherit the disease-causing mutation (assuming that their spouse is unaffected). If both spouses are affected by the same dominantly-inherited disease, this chance increases to 3-in-4. In cases where the child inherits both mutant copies of the gene, the symptoms are often more severe than when a single copy is inherited.

Visual depiction of paragraph above
How dominant disorders are inherited. Illustration by Larissa Nitschke, created with BioRender.

Which ataxias are dominantly-inherited?

The most well-known ataxias with dominant inheritance patterns are the Spinocerebellar Ataxias (SCAs), such as SCA1, SCA2, SCA3, SCA6, and SCA7. Each disease is caused by defects in a different gene. Due to the high similarity in symptoms among all ataxias, genetic testing is often required to determine the exact gene mutation and type of ataxia a patient has.

How can a patient prevent passing on a dominantly-inherited disorder to their children?

There are multiple options to prevent passing on the disease to your child if you are affected by a hereditary ataxia. One potential option is to perform in vitro fertilization (IVF), a technology that is used the conceive embryos outside the human body. The embryos can be screened for genetic mutations, allowing only the healthy embryos to be implanted into the uterus.

If you are affected by a hereditary ataxia and want to prevent having a child with ataxia, it is recommended to talk to your physician and genetic counselor regarding reproductive options.

If you would like to learn more about in vitro fertilization and embryo screening, please take a look at these resources by the University of Pennsylvania. If you want to learn more about dominant ataxia, take a look at these resources by the National Organization for Rare Disorders and Ataxia Canada.

Snapshot written by Larissa Nitschke and edited by Dr. Marija Cvetanovic.

Les yeux, des fenêtres pour voir la fonction cérébrale dans les ataxies spinocérébelleuses

Écrit par Dr Sriram Jayabal, Édité par Dr David Bushart, Traduction française par: L’Association Alatax, Publication initiale: 20 décembre 2019 

Les déficits de mouvement oculaire se produisent de manière omniprésente dans les ataxies spinocérébelleuses, même aux premiers stades de la maladie, soulignant leur importance clinique.

Imaginez les différents mouvements moteurs que vous effectuez dans votre vie quotidienne. Beaucoup de gens pensent aux actions que nous effectuons en utilisant nos mains et nos jambes, comme atteindre des objets ou marcher. Zoomons sur une autre tâche : attraper une balle de baseball. Vous devez savoir où la balle va atterrir pour pouvoir courir jusqu’à cet endroit, puis guider vos bras pendant la plongée, si nécessaire, pour attraper la balle. Pour que cela fonctionne parfaitement, vous devez voir et suivre la balle. Vos yeux vous permettent de suivre la balle pendant qu’elle se déplace. Comment vos yeux peuvent-ils garder le ballon au point pendant que vous courez à pleine vitesse vers l’endroit où vous vous attendez à ce que le ballon atterrisse ? Vos yeux sont équipés de muscles qui permettent aux yeux de bouger afin de garder la scène visuelle au point. Ces mouvements oculaires, comme l’exigent les besoins du scénario actuel, dans ce cas, attraper une balle de baseball, nous sont indispensables pour voir le monde sans aucune entrave.

Woman with hand in a "C" shape in front of her face. She's focusing in on her eye.
Les yeux peuvent fournir une fenêtre sur l’ataxie spinocérébelleuse, avant même que d’autres symptômes n’apparaissent. Photo de fotografierende sur Pexels.com

Quelle région du cerveau nous donne le pouvoir de le faire?

C’est le cervelet qui permet de bouger les bras et les jambes avec précision, contrôle également la façon dont nous bougeons nos yeux. Par conséquent, il est logique d’affirmer que lorsque le cervelet tourne mal, cela peut entraîner des anomalies des mouvements oculaires. Plusieurs études antérieures ont montré que cela était vrai dans de nombreuses ataxies spinocérébelleuses (SCA), où des symptômes non liés à la marche tels que des anomalies des mouvements oculaires se sont avérés accompagner les déficits de la marche aux stades avancés de la maladie. Cependant, des travaux récents de pionniers de la recherche clinique sur l’ataxie à la Harvard Medical School ont montré que les anomalies des mouvements oculaires sont également couramment présentes dans les SCA, même dans les états pré-symptomatiques. Cette étude met l’accent sur la nécessité cruciale de mieux documenter l’historique des déficits des mouvements oculaires et de les suivre tout au long de la progression de la maladie. Cela aidera les chercheurs à développer de meilleures échelles d’évaluation de l’ataxie.

Dans cette étude, une population de patients SCA (134 individus) qui présentaient différents types de SCA (y compris SCA1, SCA2, SCA3, SCA5, SCA6, SCA7, SCA8 et SCA17) ont été évalués pour les anomalies des mouvements oculaires à différents stades de la maladie, du stade pré-symptomatique (sans déficit de marche) au stade avancé (ceux qui utilisent un fauteuil roulant). Premièrement, il a été constaté que ~ 78% de tous les individus pré-symptomatiques présentaient des déficits de mouvement oculaire, et ces déficits sont devenus encore plus courants à mesure que la maladie progressait, où chaque personne à un stade avancé présentait des déficits de mouvement oculaire.

Deuxièmement, lorsque les chercheurs ont examiné de près les mouvements oculaires, ils ont constaté que différents types d’ataxie pouvaient provoquer différents types de déficits des mouvements oculaires.

Cependant, ces résultats ne sont que suggestifs en raison de la faible population d’individus SCA à un stade précoce dans cette étude et des types d’évaluations utilisées. Par conséquent, les études futures nécessiteront une plus grande taille de la population et une analyse quantitative approfondie des types spécifiques de déficits de mouvement oculaire pour aider à caractériser les anomalies du mouvement oculaire dans les SCA. Enfin, la Brief Ataxia Rating Scale (BARS), un test clinique simple récemment conçu pour l’ataxie, a été encore améliorée dans cette étude pour tenir compte des déficits de mouvement oculaire cliniquement observés dans les SCA. Avec une métrique aussi nuancée, un score BARS amélioré s’est révélé corrélé avec le stade, la gravité et la durée de la maladie, quel que soit le type d’ataxie.

Continue reading “Les yeux, des fenêtres pour voir la fonction cérébrale dans les ataxies spinocérébelleuses”

A Potential Treatment for Universal Lowering of all Polyglutamine Disease Proteins

Written by Frida Niss Edited by Dr. Hayley McLoughlin

One drug to treat them all: an approach using RNA interference to selectively lower the amount of mutant protein in all polyglutamine diseases. Work by a group in Poland shows initial success in Huntington’s Disease, DRPLA, SCA3/MJD, and SCA7 patient cells.

Can one drug treat nine heritable and fatal disorders? Polyglutamine diseases are disorders in which a gene encoding a specific protein is expanded to include a long CAG repeat. This results in the protein having a long chain of the amino acid glutamine, which disturbs the ability of the protein to fold itself and interact correctly with other proteins. This type of malfunctioning protein would normally be degraded by the cell, but in the case of polyglutamine proteins this seems unusually difficult. This causes a gradual build-up of faulty protein that disrupts several cellular pathways, eventually leading to cell death in sensitive cells. Currently there is only symptomatic treatment of these fatal diseases available, and they do not slow down the disease progression. One promising line of research is investigating the possibility of lowering the amount of these disease proteins using RNA interference.

RNA interference is the method by which a gene is silenced through a manipulation of a natural defense mechanism against viruses. When a virus attacks, it tries to inject DNA or RNA like particles to hijack the cell’s machinery for its own survival. To defend itself, the cell uses the RNA interference pathway, where the protein Dicer slices the DNA/RNA into smaller pieces and loads it into the RNA-induced silencing complex (RISC complex). The RISC complex finds all DNA/RNA particles in the cell with the same sequence and destroys them, effectively hamstringing the virus.

This machinery can be co-opted as a potential tool for treating neurodegenerative diseases caused by harmful mutant proteins. By inserting a small interfering RNA (siRNA), we can target the mRNA that codes for the harmful protein and trick the RISC complex into degrading it. In polyglutamine diseases, this has been successful when the mutant mRNA possesses a small mutation called a single nucleotide polymorphism (SNP). However, when an siRNA is delivered to a cell using a vector, which is a circular piece of DNA carrying genetic material, the Dicer protein tends to process the siRNA in unpredictable ways. This means that the treatment may not always be selective, and can end up targeting the normal protein as well. Moreover, not all patients have the same SNPs, so several drugs for every disease might be needed.

A pipette transfering liquid between small centifuge tubes
Close up picture of scientific research being conducted in a laboratory. Image courtesy of the University of Michigan SEAS.

In the paper by Kotowska-Zimmer and colleagues they have used short hairpin RNAs (shRNAs) targeting the CAG repeat tract itself instead of siRNAs targeting SNPs around the CAG repeat tract. shRNAs fold themselves like a hairpin when transcribed, and this loads them into the RISC complex through a somewhat different pathway, with less degradation along the way than conventional siRNAs. The second part that is different to other RNA interference strategies in this study is that the shRNA does not completely match the CAG repeat, but contains mismatches. This means that the RISC complex cannot actually cut and degrade the mRNA, and ends up simply sitting on the CAG repeat tract instead. The longer the repeat tract, the more RISC complexes can fit on the tract and block translation. Using this type of RNA interference Kotowska-Zimmer and colleagues have tried to lower the expression of huntingtin, atrophin-1, ataxin-3 and ataxin-7 proteins in cellular models of the corresponding polyglutamine diseases.

Continue reading “A Potential Treatment for Universal Lowering of all Polyglutamine Disease Proteins”