Spotlight: The CMRR Ataxia Imaging Team

Location: University of Minnesota, MN, USA

Year Research Group Founded:  2008

What models and techniques do you use?

A photo of the CMRR Ataxia Imaging Team
A photo of the CMRR Ataxia Imaging Team in 2019. Front row, left to right – Diane Hutter, Christophe Lenglet (PI), Gulin Oz (PI), Katie Gundry, Jayashree Chandrasekaran Back row, left to right: Brian Hanna, James Joers, Pramod Pisharady, Kathryn France, Pierre-Gilles Henry (PI), Dinesh Deelchand, Young Woo Park, Isaac Adanyeguh (insert)

Research Group Focus

What shared research questions is your group investigating?

We use high field, multi-nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) to explore how diseases impact the central nervous system. These changes can be structural, functional, biochemical and metabolic alterations. For example, we apply advanced MRI and MRS methods in neurodegenerative diseases and diabetes.

We also lead efforts in research taking place at multiple different cities across the United States and the world. As you can imagine, studies spread out across such a big area require a lot of coordination and standardization. We design robust MRI and MRS methods to be used in clinical settings like these.

Another important question for our team is how early microstructural, chemical and functional changes can be detected in the brain and spinal cord by these advanced MR methods. We are interested in looking at these changes across all stages of disease.

Why does your group do this research?

The methods we use (MRI and MRS) can provide very helpful information to be used in clinical trials. These biomarkers we look at can provide quantitative information about how a disease is progressing or changing.

There is good evidence that subtle changes in the brain can be detected by these advanced MR technologies even before patients start having symptoms. If we better understand the earliest changes that are happening in the brain, this can in turn enable interventions at a very early stage. For example, we could treat people even before brain degeneration starts to take place.

Why did you form a research group connecting multiple labs?

We came together to form the CMRR Ataxia Imaging Team to benefit from our shared and complementary expertise, experience, and personnel. We can do more together than we could apart.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for multiple different studies. You can learn more about the research we are recruiting for at the following links: READISCA,  TRACK-FA, NAF Studies, and FARA Studies. More information is also available through the UMN Ataxia Center.

A photo of the CMRR Ataxia Imaging Team in 2016
A photo of the CMRR Ataxia Imaging Team in 2016, in front of the historic 4T scanner where the first functional MR images were obtained, in CMRR courtyard. Left to right – Christophe Lenglet (PI), Sarah Larson, Gulin Oz (PI), Dinesh Deelchand, Pierre-Gilles Henry (PI), James Joers, Diane Hutter

What Labs Make Up the CMRR Ataxia Imaging Team?

The Oz Lab

Principal Investigator:  Dr. Gulin Oz

Year Founded:  2006

Our focus is on MR spectroscopy, specifically neurochemistry and metabolism studies. We focus on spinocerebellar ataxias. Also, we have been leading MRS technology harmonization across different sites and vendors.

The Henry Lab

Principal Investigator: Dr. Pierre-Gilles Henry

Year Founded:  2006

We develop advanced methods for MR spectroscopy and motion correction. Then apply these new methods to the study of biochemistry and metabolism in the brain and spinal cord in various diseases. We have been working on ataxias since 2014.

Fun Fact about the Henry Lab: The French language can often be heard in discussions in our lab!

The Lenglet Lab

Principal Investigator:  Dr. Christophe Lenglet

Year Founded:  2011

We develop mathematical and computational strategies for human brain and spinal cord connectivity mapping. We do this using high field MRI. Our research aims at better understanding the central nervous system anatomical and functional connectivity. We are especially interested in looking at this in the context of neurological and neurodegenerative diseases.

Fun Fact

Members of our team have their roots in 7 countries (US, Turkey, France, India, Mauritius, South Korea, Ghana) and 4 continents (North America, Europe, Asia, Africa)

For More Information, check out the Center for Magnetic Resonance Research (CMRR) Website!


Written by Dr. Gulin Oz, Dr. Pierre-Gilles Henry, and Dr. Christophe Lenglet, Edited by Celeste Suart

Spotlight: The Kuo Lab

Principal Investigator: Dr. Sheng-Han Kuo

Location: Columbia University, New York, NY, United States

Year Founded:  2012

What disease areas do you research?

What models and techniques do you use?

Kuo Lab group photo.
This is a group picture of the Kuo Lab. From the left to right: Nadia Amokrane, Chi-Ying (Roy) Lin, Sara Radmard, Sheng-Han Kuo (PI), Chih-Chun (Charles) Lin, Odane Liu, Chun-Lun Ni , Meng-Ling Chen, Natasha Desai, David Ruff.

Research Focus

What is your research about?

We study how mishaps and damage in the cerebellum lead to the symptoms experienced by ataxia and tremor patients. By looking at human brains, as well as brains from mouse models, we study how different changes in brain structure can lead to symptoms. This includes how well different parts of the brain can communicate with each other.

Why do you do this research?

When you ask patients about the challenges living with ataxia or tremor, they will talk to you about their symptoms. Symptoms can make different activities of daily living very challenging! By connecting specific brain changes to specific symptoms, we want to develop treatment options that target specific diseases. By doing this, we hope to improve patient’s quality of life. 

Initiative for Columbia Ataxia and Tremor Logo. It is a circle containing a lion with its whiskers to look like a neuron

The Kuo lab is part of the Initiative for Columbia Ataxia and Tremor. It’s a new Initiative at Columbia University to bring a group of physicians, scientists, surgeons, and engineers to advance the knowledge of the cerebellum and to develop effective therapies for ataxia and tremor.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for clinical research and trials. You can learn more about the studies we are currently recruiting for at this link.

Fun Fact

In the Kuo Lab, we call ourselves “the Protector of the Cerebellum in New York City”.

For More Information, check out the Kuo Lab Website!

We are looking for new graduate students and postdoctoral researchers to join our team. If you are interested in our work, please reach out to us


Written by Dr. Sheng-Han Kuo, Edited by Celeste Suart

Identifying FDA-approved molecules to treat SCA6

Written by Dr Hannah Shorrock Edited by Dr. Larissa Nitschke

Pastor and colleagues identify FDA-approved small molecules that selectively reduce the toxic polyglutamine-expanded protein in SCA6.

Selectively targeting disease-causing genes without disrupting cellular functions is essential for successful therapy development. In spinocerebellar ataxia type 6 (SCA6), achieving this selectivity is particularly complicated as the disease-causing gene produces two proteins that contain an expanded polyglutamine tract. In this study, Pastor and colleagues identified several Food and Drug Administration (FDA) approved small molecules that selectively reduce the levels of one of these polyglutamine-containing proteins without affecting the levels of the other protein, which is essential for normal brain function. By using drugs already approved by the United States Food and Drug Administration to treat other diseases, referred to as FDA-approved drugs, the team hopes to reduce the time frame for pre-clinical therapy development.

SCA6 is an autosomal dominant ataxia that causes progressive impairment of movement and coordination. This is due to the dysfunction and death of brain cells, including Purkinje neurons in the cerebellum. SCA6 is caused by a CAG repeat expansion in the CACNA1A gene. CACNA1A encodes two proteins: the a1A subunit, the main pore-forming subunit of the P/Q type voltage-gated calcium ion channel, as well as a transcription factor named a1ACT.

The a1A subunit is essential for life. Its function is less affected by the presence of the expanded polyglutamine tract than that of a1ACT. The transcription factor, a1ACT, controls the expression of various genes involved in the development of Purkinje cells. Expressing a1ACT protein containing an expanded polyglutamine tract in mice causes cerebellar atrophy and ataxia. While reducing levels of the a1A subunit may have little effect on SCA6 disease but impact normal brain cell function, reducing levels of a1ACT may improve disease in SCA6. Therefore, Pastor and colleagues decided to test the hypothesis that selectively reducing levels of the a1ACT protein without affecting levels of the a1A protein may be a viable therapeutic approach for SCA6.

Colorful pile of medicines in blister packs which color are White, Yellow, Black and Pink pills.
By using drugs already approved by the FDA, the team hopes to reduce the time frame for pre-clinical therapy development. Photo used under license by Wanchana Phuangwan/Shutterstock.com.
Continue reading “Identifying FDA-approved molecules to treat SCA6”

Four diseases, One Gene: CACNA1A

Written by Dr. Judit Pérez Edited by Dr. David Bushart

A new case report describes how a new mutation in the CACNA1A gene causes ataxia with seizures.

Genes and their diseases

Hereditary ataxias are caused by mutations in different genes that affect how different parts of the brain and spinal cord work. Usually, the affected genes predict how one would expect the patient’s clinical signs and symptoms to look. The reverse can also be true. For example, a set of clinical signs and symptoms may raise suspicion of a known genetic disease, which allows doctors to perform focused genetic testing to confirm the diagnosis. These correlations are helpful for doctors and patients in understanding the diagnostic process and disease outlook.

New mutation, new disease

A study by Stendel and colleagues was inspired by a patient who developed ataxia in mid-adulthood that slowly worsened over the next decades of his life. The progression resembled that of spinocerebellar ataxias with repeat expansions in their genes as the culprits. However, when doctors performed the usual genetic testing for ataxia genes, they did not find a match. Nevertheless, suspicion for an ataxia gene playing a role remained high. The patient had experienced seizures as a child (called “absence seizures”), which didn’t entirely fit the picture of known SCAs. Where to go from here? The scientists next broadened their search to include 118 genes that are known to cause ataxia or other diseases that include ataxia symptoms.  To their surprise, they found a previously unidentified mutation in a well-known ataxia gene called CACNA1A.

Human brain digital illustration. Electrical activity, flashes and lightning on a blue background.
CACNA1A is a gene that instructs brain cells to make a protein called Cav2.1, which helps neurons communicate. But now mutations in the CACNA1A gene are now connected to four different diseases. Photo used under license by Yurchanka Siarhei/Shutterstock.com.
Continue reading “Four diseases, One Gene: CACNA1A”

Results of the RISCA study: gaining a better understanding of how ataxia symptoms first appear in at-risk patients

Written By Dr. David Bushart Edited by Celeste Suart

The RISCA study will help researchers design smarter, more efficient clinical trials by teaching us about the very early stages of SCA

Ataxia research has grown significantly in recent years. Although much work still remains, we are gaining a better understanding of how ataxia affects patients. Several exciting, new therapies are currently being studied. These advances would not be possible without the involvement of ataxia patients in clinical research studies. Some clinical studies are drug trials, where patients are enrolled to help researchers determine whether new therapies are effective at treating ataxia. However, other equally important types of clinical studies also exist. Ataxia patients play a critical role in the success of these studies.

What would an ideal treatment for ataxia look like? Ideally, we would be able to treat patients when their symptoms are very mild, or perhaps even before their symptoms appear at all. However, there are several obstacles to developing and testing this kind of hypothetical treatment:

First, it can be hard to know which patients to treat if symptoms are not yet present! There are many people who descend from patients affected by SCA of some kind. They have a 50% chance of being affected. While some of these people have been genetically tested, many have not. This makes it difficult to predict whether they will eventually develop SCA at all.

Second, along those lines, it could be very difficult to predict whether a drug is working to prevent symptoms from appearing if we don’t know precisely when symptoms should appear. It is much easier to tell if a drug is working when it is given to a patient with obvious symptoms – if their symptoms improve, the drug works.

Third, it can be difficult for researchers to enroll enough patients into clinical trials to get a meaningful result. This is complicated by the fact that we don’t know the answers to the first two questions above. Until recently, it remained unclear how a trial to test such a hypothetical treatment would need to be designed.

Thankfully, recent work has helped us better understand the answers to these questions. Results from the RISCA study were recently released. RISCA, which is a prospective, longitudinal, observational cohort study, was designed to study individuals who are at-risk for developing SCA, and how SCA symptoms might first appear.

Doctor and patient discussing something while sitting at the table
The RISCA study was designed to give doctors and patients more information about when ataxia symptoms first start to appear. This information is incredibly important for future ataxia clinical trials. Photo used under license by S_L/Shutterstock.com.
Continue reading “Results of the RISCA study: gaining a better understanding of how ataxia symptoms first appear in at-risk patients”