In search of a common pathway leading to motor dysfunction in cerebellar ataxias

Written by Dr. Carolyn J. Adamski Edited by Dr. Judit M Perez Ortiz

A research group uncovers a drug target to potentially correct motor phenotypes across several cerebellar ataxias.

When someone is diagnosed with spinocerebellar ataxia (SCA), their symptoms may look very similar despite the fact that different genes are causing the disease. There are over 35 genes known to cause cerebellar ataxia, each of which are studied by scientists to try to understand the ways in which they can each lead to disease. Increasingly, scientists are beginning to appreciate that perhaps it would be helpful to find commonalities between the different SCAs to identify treatment options that could help more SCA patients. The emerging picture is that the genes causing cerebellar ataxia are all vital to the health and function of neurons. Studies like these are currently being conducted all over the world. One group focused on MTSS1, a critical component of neuronal function. They made the exciting discovery that a handful of other genes known to cause cerebellar ataxia were doing so, at least in part, through MTSS1. This study uncovered a common network between cerebellar ataxia genes. Their hope is that someday clinicians will be able to treat many cerebellar ataxias with one therapy.

wooden pole with a wooden arrow pointing to the left
A photo of a road sign giving direction. Could MTSS1 be the pathway sign pointing towards ataxia? Photo by Jens Johnsson on Pexels.com

One approach scientists use to understand a gene’s function is to remove it from the genome, typically in mice, and observe what happens. This group reported that when they removed MTSS1, mice were not able to walk as well as healthy mice. This defect got progressively worse with age. What they observed in these mice looked very similar to what patients with cerebellar ataxia experience. Because there are a few areas of the brain important for walking, the authors wanted to make sure this was due to defects in the cerebellum. Neurons in the cerebellum missing MTSS1 were there, but they were unable to effectively communicate with other neurons in the brain and were slowly dying. When a neuron in the cerebellum fails to communicate the right message, things like poor coordination of body movement happen.

After establishing that removal of MTSS1 causes disease, this group went back to the literature and found that MTSS1 was a fundamental regulator of a pathway known to be critical for communication between neurons. They looked in the mice lacking MTSS1 and found that this pathway was abnormally in “overdrive”. They immediately started looking for ways to correct this. They hoped that by correcting this major pathway, they could help the neurons to more effectively communicate body movements again. Eventually, they found a compound that could specifically dial this pathway down. They gave this drug to the mice lacking MTSS1 and used a number of tests to examine their every movement. To their surprise, they were unable to tell the difference between normal healthy mice and those lacking MTSS1 and treated with the compound. In other words, the compound was able to help the ataxia in these mice. This was an exciting result indeed!

Continue reading “In search of a common pathway leading to motor dysfunction in cerebellar ataxias”