Working with cerebellar ataxia

Written by Dr. David Bushart Edited by Dr. Sriram Jayabal

How can employment be made more accessible for ataxia patients? What barriers exist? A study of workers and non-workers with ataxia analyzes the benefit of employment, as well as how to reduce risk of injury.

A job can often become part of a person’s identity. When people meet for the first time, one of the first questions that often comes up is “what do you do for work?” While this question can be harmless, it can also be frustrating to non-workers, particularly to those who are actively looking for employment. This may include some patients with cerebellar ataxia.

It can be difficult to manage disease symptoms alongside the stress of a job. However, some patients may find that including a job as part of their routine can be helpful for physical and mental wellness. In these cases, it is important for ataxia patients to have access to fair employment. Despite these benefits, finding a job can prove quite challenging, and unfortunately, ignorant assumptions about the capabilities of workers with ataxia may make finding employment even harder. How can employment be made more accessible to ataxia patients who wish to work?

two people shaking bands over a business agreement
Photo by fauxels on Pexels.com

Determining the work capabilities of ataxia patients

Helping ataxia patients find work might have a significant benefit on their overall quality-of-life. Researchers in Italy designed a study to get a better idea about the capabilities of workers with ataxia and the barriers to employment that they face. The research team, led by Alberto Ranavolo, interviewed both workers and non-workers with ataxia. Importantly, the patients interviewed for this study had been diagnosed with different types of ataxia, including dominantly-inherited ataxias, Friedrich’s ataxia, and other ataxias with unknown causes. Within this group, 24 were currently workers and 58 were non-workers at the time of the study. This allowed the researchers to determine how characteristics such as age, gender, education, and duration of symptoms might impact the ability to work.

Continue reading “Working with cerebellar ataxia”

Snapshot: How does CAG tract length affect ataxia symptom onset?

The instructions our bodies need to grow and function are contained in our genes. These instructions are made up of tiny structures called nucleobases. There are four types of nucleobases in DNA: adenine (A), cytosine (C), guanine (G), thymine (T). By putting these four nucleobases in different orders and patterns, this writes the instructions for our body.

artists drawing of a blue DNA molecule
A cartoon strand of DNA. Image by PublicDomainPictures from Pixabay

Some of the genes contain long sections of repeating ‘CAG” instructions, called CAG tracts. Everyone has repeating CAG tracts in these genes, but once they are over a certain length they can lead to disease. Some ataxias are caused by this type of mutation, including SCA1, SCA2, SCA3, SCA6, SCA7 and SCA17. These are often called polyglutamine expansion disorders. This is because “CAG” gives the body instructions to make the amino acid glutamine. You can read more about what is polyglutamine expansion in our past Snapshot about that subject.

For each disorder caused by a CAG expansion mutation, the number of times the CAG is repeated in a particular gene will determine whether someone will develop the disease. Repeat lengths under this number will not cause symptoms and repeat lengths over the threshold will usually lead to ataxia. When someone undergoes genetic testing for ataxia, doctors will be able to tell them the length of these CAG tracts and whether they have a CAG repeat number in one of these genes that is over the threshold. This table gives a summary of different CAG expansion mutations that can lead to ataxia and how the length of the repeat affects age of onset.

 Affected Gene Normal
Repeat Size
Disease
Repeat Size
SCA1ATXN16-4439-88
SCA2ATXN215-3136-77
SCA3ATXN312-4055-86
SCA6CACNA1A 4-1821-33
SCA7ATXN74-3537-306
SCA12PPP2R2B4-3266-78
SCA17TBP25-4246-63

For SCA1, SCA2, SCA3, SCA6, and SCA7; longer CAG tracts are associated with earlier onset.

For SCA12, it is hard to predict the age of onset based on repeat length as SCA12 is so rare. Some individuals with long repeats don’t develop ataxia. One study found that longer CAG tract lengths are associated with earlier onset but that it does not affect the severity of symptoms.

For SCA17, Longer CAG tracts have separately been associated with an earlier age of onset and more severe cerebellar atrophy.

In general, people with longer repeat lengths in ataxia genes are likely to present with ataxia symptoms earlier in life. However, it is important to remember that there are many other factors involved. Other genes may have mutations that either worsen the progression of ataxia or protect against more severe symptoms. Therefore, in individual people, the length of the repeat is not always enough information to determine when that person will start showing symptoms, or how severe these symptoms will be.

If you would like more information about the genetic causes of SCAs, including information about genetic testing and what CAG repeat length might mean, take a look at these resources by the National Ataxia Foundation.

Snapshot written by Anna Cook and edited by Larissa Nitschke.

Continue reading “Snapshot: How does CAG tract length affect ataxia symptom onset?”

Eyes: Windows to peek at brain function in spinocerebellar ataxias

Written by Dr. Sriram Jayabal Edited by Dr. David Bushart

Eye movement deficits occur ubiquitously in spinocerebellar ataxias, even at early disease states, highlighting their clinical importance.

Imagine the different motor movements that you make in your everyday life. Many people think of actions that we perform using our hands and legs, such as reaching for objects or walking. Let’s zoom in on a different task: catching a baseball. You need to know where the ball is going to land so you can run to that spot, then guide your arms while diving, if need be, to catch the ball. For this to work perfectly, you need to see and follow the ball. Your eyes enable you to track the ball while it is moving. How can your eyes keep the ball in focus while you are running at full speed towards the spot where you expect the ball to land? Your eyes are equipped with muscles which enable the eyes to move so as to keep the visual scene in focus. These eye movements, as demanded by the needs of the current scenario, in this case, catching a baseball, are indispensable for us to see the world without any hindrance.

Woman with hand in a "C" shape in front of her face. She's focusing in on her eye.
The eyes may provide a window into spinocerebellar ataxia, even before other symptoms show up. Photo by fotografierende on Pexels.com

Which brain region gives us the power to do this?

The cerebellum, or “little brain”, which enables one to move their arms and legs precisely, also controls the way we move our eyes. Therefore, it is logical to posit that when cerebellum goes awry, it may lead to eye movement abnormalities. Several previous studies have shown this to be true in many spinocerebellar ataxias (SCAs), where non-gait symptoms such as eye movement abnormalities have been found to accompany gait deficits in advanced stages of the disease. However, recent work from pioneers in clinical ataxia research at the Harvard Medical School have shown that eye movement abnormalities are also commonly present in SCAs even in pre-symptomatic states. This study emphasizes the critical need to better document the history of eye movement deficits and track them throughout the progression of the disease. This will help researchers to develop better rating scales for ataxia.

In this study, a population of SCA patients (134 individuals) who exhibited different types of SCA (including SCA1, SCA2, SCA3, SCA5, SCA6, SCA7, SCA8 and SCA17) were assessed for eye movement abnormalities at different stages of the disease, from pre-symptomatic (with no gait deficits) to advanced stages (those who use a wheel-chair). First, it was found that ~78% of all pre-symptomatic individuals exhibited eye movement deficits, and these deficits became even more common as the disease progressed, where every single person in advanced stages exhibited eye movement deficits. Second, when researchers examined the eye movements closely, they found that different types of ataxia might cause different kinds of eye movement deficits. However, these results are only suggestive because of the small population size of early-stage SCA individuals in this study, and the types of assessments used. Therefore, future studies will require a larger population size and a thorough quantitative analysis of specific types of eye movement deficits to help characterize eye movement abnormalities in SCAs. Finally, the Brief Ataxia Rating Scale (BARS), a recently designed simple clinical test for ataxia, was further improved in this study to account for the clinically observed eye movement deficits in SCAs. With such a nuanced metric, an improved BARS score was found to correlate with the stage, severity and duration of the disease irrespective of the type of ataxia.

Continue reading “Eyes: Windows to peek at brain function in spinocerebellar ataxias”

Mitochondrially Stressed

Written by Dr. Judit M. Pérez Ortiz Edited by Dr. Brenda Toscano Márquez

Scientists describe how SCA2 oxidative stress can affect mitochondrial function, and potentially how to fix it

Mitochondrial Stress

We all have experienced stress. When cramming for an exam last minute, or getting ready for a job interview, our bodies feel stress-related energetic drive and hyperfocus. Small bursts of stress can help us get through specific demands, but too much constant stress takes a toll and makes it difficult for us to function. It turns out that the cells in our bodies experience stress too! While the stress response that we experience in our hectic lives is associated with stress hormones, the stress cells experience is from another source altogether – mitochondria. Scientists at the University of Copenhagen in Denmark identified a novel link between mitochondrial oxidative stress and spinocerebellar ataxia type 2 (SCA2).

Classically, we learn that mitochondria are the powerhouse of the cell responsible for making the bulk of the energy currency that cells need to work and survive, ATP. To do this, mitochondria rely on a cooperative group of protein complexes called the Electron Transport Chain (ETC). Albeit via a more sophisticated procedure than a hot-potato game, the complexes mediate chemical reactions (called redox reactions) by which “hot” electrons are passed from high energy molecules to lower-energy molecules, and so on. The final electron recipient (“acceptor”) is a stable oxygen molecule and their encounter is used to make water. The activity of the ETC helps harness energy that is ultimately used to make ATP in what is called oxidative phosphorylation.

Sometimes not all the electrons make it through; the hot potato “drops”. Electrons leak out and react directly with molecular oxygen (chemical formula O2), turning unstable superoxide (chemical formula O2) which in turn, can create other reactive oxygen species (ROS). The extra electron in superoxide gives it a negative charge and makes it highly reactive and toxic. Just like the small amount of stress primes your body for a challenge to come, low levels of ROS hints the cell that it needs to make some changes to optimize the system. As the superoxide levels go up, cells make more antioxidant enzymes available to keep ROS in check. Antioxidant enzymes convert the highly reactive superoxide to a less reactive hydrogen peroxide (like the one in your bathroom cabinet). This, in turn, can be converted to water and ordinary oxygen molecules. In a word, the antioxidants “detox” the cells from ROS insult.

The cell becomes “stressed out” when there’s too much ROS that can’t be compensated for. This stress caused by oxygen or “oxidative stress” can damage DNA, fats, and proteins that affect the cell and organism as a whole. For example, oxidative stress can contribute to heart disease, diabetes, cancer, and neurodegenerative diseases.

cartoon drawing of human cells that are blue
An artist’s drawing of human cells under a microscope.

Continue reading “Mitochondrially Stressed”

In search of a common pathway leading to motor dysfunction in cerebellar ataxias

Written by Dr. Carolyn J. Adamski Edited by Dr. Judit M Perez Ortiz

A research group uncovers a drug target to potentially correct motor phenotypes across several cerebellar ataxias.

When someone is diagnosed with spinocerebellar ataxia (SCA), their symptoms may look very similar despite the fact that different genes are causing the disease. There are over 35 genes known to cause cerebellar ataxia, each of which are studied by scientists to try to understand the ways in which they can each lead to disease. Increasingly, scientists are beginning to appreciate that perhaps it would be helpful to find commonalities between the different SCAs to identify treatment options that could help more SCA patients. The emerging picture is that the genes causing cerebellar ataxia are all vital to the health and function of neurons. Studies like these are currently being conducted all over the world. One group focused on MTSS1, a critical component of neuronal function. They made the exciting discovery that a handful of other genes known to cause cerebellar ataxia were doing so, at least in part, through MTSS1. This study uncovered a common network between cerebellar ataxia genes. Their hope is that someday clinicians will be able to treat many cerebellar ataxias with one therapy.

wooden pole with a wooden arrow pointing to the left
A photo of a road sign giving direction. Could MTSS1 be the pathway sign pointing towards ataxia? Photo by Jens Johnsson on Pexels.com

One approach scientists use to understand a gene’s function is to remove it from the genome, typically in mice, and observe what happens. This group reported that when they removed MTSS1, mice were not able to walk as well as healthy mice. This defect got progressively worse with age. What they observed in these mice looked very similar to what patients with cerebellar ataxia experience. Because there are a few areas of the brain important for walking, the authors wanted to make sure this was due to defects in the cerebellum. Neurons in the cerebellum missing MTSS1 were there, but they were unable to effectively communicate with other neurons in the brain and were slowly dying. When a neuron in the cerebellum fails to communicate the right message, things like poor coordination of body movement happen.

After establishing that removal of MTSS1 causes disease, this group went back to the literature and found that MTSS1 was a fundamental regulator of a pathway known to be critical for communication between neurons. They looked in the mice lacking MTSS1 and found that this pathway was abnormally in “overdrive”. They immediately started looking for ways to correct this. They hoped that by correcting this major pathway, they could help the neurons to more effectively communicate body movements again. Eventually, they found a compound that could specifically dial this pathway down. They gave this drug to the mice lacking MTSS1 and used a number of tests to examine their every movement. To their surprise, they were unable to tell the difference between normal healthy mice and those lacking MTSS1 and treated with the compound. In other words, the compound was able to help the ataxia in these mice. This was an exciting result indeed!

Continue reading “In search of a common pathway leading to motor dysfunction in cerebellar ataxias”