A New Use for Old Drugs

Written by Dr. Amy Smith-Dijak Edited by Logan Morrison

Basic biology helps identify a new treatment for ataxia

Drug design doesn’t always have to start with a blank slate. Sometimes understanding how existing drugs work can help researchers to design new ones, or even to recombine old drugs in new and more effective ways. That’s what the researchers behind this paper did. They investigated the basic biology of three existing drugs: chlorzoxazone, baclofen, and SKA-31.

Two of these – chlorzoxazone and baclofen – are already FDA-approved for use as muscle relaxants, and chlorzoxazone had previously been found to have a positive effect on eye movements in spinocerebellar ataxia type 6. Looking at the results of their experiments, they realized that a combination of chlorzoxazone and baclofen would probably be an effective treatment for ataxia over a long period. They offered this drug combination to patients, who had few adverse effects and showed improvement in their diseasesymptoms. Based on these findings, the researchers recommended that larger trials of this drug combination should be conducted and that people trying to design new drugs to treat ataxia should try to interact with the same targets as chlorzoxazone.

mutliple types of drugs in pill form scattered ac
Can old drugs have potential for new types of treatment? Photo by Anna Shvets on Pexels.com.

When this paper’s authors started their research, they wanted to know more about how ataxia changes the way that brain cells communicate with each other. Brain cells do this using a code made up of pulses of electricity. They create these pulses by controlling the movement of electrically charged atoms known as ions. The main ions that brain cells use are potassium, sodium, calcium and chloride. Cells control their movement through proteins on their surface called ion channels which allow specific types of ions to travel into or out of the cell at specific times. Different types of cells use different combinations of ion channels, which causes different types of ions to move into and out of the cell more or less easily and under different conditions. This affects how these cells communicate with each other.

For example, a cell’s “excitability” is a measure of how easy it is for that cell to send out electrical pulses. Creating these pulses depends on the right ions entering and exiting the cell at the right time in order to create one of these pulses. Multiple types of spinocerebellar ataxia seem to make it difficult for Purkinje cells, which send information out of the cerebellum, to properly control the pattern of electrical signals that they send out. This would interfere with the cerebellum’s ability to communicate with the rest of the brain. The cerebellum plays an important roll in balance, posture and general motor coordination, so miscommunication between it and the rest of the brain would account for many of the symptoms of spinocerebellar ataxias.

Earlier research had found a link between this disrupted communication and a decrease in the amount of some types of ion channels that let potassium ions into Purkinje cells. Thus, this paper’s authors wanted to see if drugs that made the remaining potassium channels work better would improve Purkinje cell communication.

Continue reading “A New Use for Old Drugs”

The Cognitive Deficits of Mice and Men: How the cerebellum contributes to the cognitive symptoms of SCA1

Written by Kim M. Gruver Edited by David Bushart

What’s cognition got to do with ataxia? Could the cerebellum mediate both cognitive and motor symptoms in the same disease? And how can scientists use mice to find out?

Spinocerebellar ataxia type 1, or SCA1, is a progressive neurodegenerative disease that has no cure. In SCA1, an expanded CAG repeat sequence in the ATXN1 gene increases the chain length of the amino acid glutamine (Q), so SCA1 is called a “polyQ” disease. As suggested by its name, the cerebellum is a heavily affected brain region in SCA1. Since the cerebellum is involved in motor coordination, it is no surprise that dysregulated control of movement, or ataxia, is a major symptom of SCA1.

However, what may come as a surprise is that some SCA1 patients also experience changes in cognition in addition to ataxia. Since the mutated ATXN1 gene is found throughout the brain, it has been difficult to tease apart whether the cerebellum contributes to the cognitive symptoms of SCA1 in addition to the motor symptoms. It is possible that cognitive symptoms of SCA1 might be exclusively caused by brain regions other than the cerebellum. For example, ATXN1 is also highly expressed in the prefrontal cortex, a region known for mediating many cognitive processes. But before we discount the possibility that the cerebellum plays a role in the cognitive symptoms experienced by some SCA1 patients, it is important to note an interesting observation in neuroscience research that has emerged in recent decades. Scientists have described a surprising role of the cerebellum in a host of neurological disorders like autism and schizophrenia. In light of these findings, that the cerebellum could be implicated in both the motor and cognitive symptoms of SCA1 may not be so far-fetched.

two borwn lab mice held in the hand of a researcher wearing plastic gloves
Two lab mice from the National Institutes of Health, image courtesy of WikiMedia.

A powerful tool on the researcher’s lab bench to study diseases like SCA1 is the laboratory mouse. Since 1902, mice have played an indispensable role in disease research. Scientists can breed mice that express human genes, such as a mutated form of ATXN1, to figure out what goes awry in diseases like SCA1. Animal models of disease help researchers to identify potential treatment strategies that may be useful to humans. Since such in-depth analysis and careful experimental manipulation is impossible in human patients, animal models are an invaluable tool to study diseases like SCA1.

In the SCA1 field, scientists use multiple animal models to study SCA1. Researchers have harnessed the differences between these mouse models to address different questions, such as:

  • “How does the number of CAG repeats affect SCA1 symptoms in mice?”
  • “What happens if the ATXN1 gene is removed altogether?”
  • “Do SCA1 symptoms still occur if the mutant ATXN1 gene is restricted to cerebellar Purkinje cells?

 In mice and in humans, we know that the length of the polyQ expansion in the ATXN1 gene correlates with both the severity and the age of symptom onset of SCA1. Mice that express more CAG repeats (a longer polyQ expansion) in their ATXN1 gene experience more severe symptoms that start earlier in life than mice with a shorter polyQ expansion. When mutant ATXN1 expression is restricted to Purkinje cells in the cerebellum, mice display motor impairments similar to what is observed in mice with mutant ATXN1 expression everywhere in the brain. This tells us that disrupting healthy ATXN1 expression in Purkinje cells alone is sufficient to cause motor symptoms that stem from SCA1. To put it plainly, mouse models of SCA1 have been a crucial component of SCA1 research.

Since human SCA1 patients experience behavioral symptoms, scientists also use behavioral tools to evaluate the symptoms of SCA1 mice. Motor coordination tests are essential in ataxia research. These tests allow scientists to determine whether a potential intervention improves or worsens symptoms in mice. This is the first step to evaluate whether an intervention could be promising for human patients. However, as we discussed earlier, motor impairments are not the only symptom faced by SCA1 patients: many exhibit cognitive deficits as well. But could mice be used to evaluate something as complex as cognition? Can laboratory mice really help scientists uncover whether the cerebellum contributes to the cognitive impairments observed in SCA1? Researchers at the University of Minnesota say yes.

Continue reading “The Cognitive Deficits of Mice and Men: How the cerebellum contributes to the cognitive symptoms of SCA1”

Snapshot: What does dominant ataxia mean?

Ataxias can occur due to a multitude of reasons. One way a patient might acquire ataxia is from an accident or an injury – not as a result of genetics. On the other hand, a patient could also inherit a specific mutation (a genetic defect, in other words) from one or both of their parents. In this case, the ataxia is called “hereditary.” Hereditary ataxias can be further classified as either “dominant” or “recessive.”

What is a dominantly-inherited disorder?

Most genes in our body have two copies: one that we inherit from our mother, and one that we inherit from our father. Dominantly-inherited disorders are diseases in which a mutation in just one copy of a gene is enough to cause disease. When both copies of a gene need to be mutated to cause symptoms, the disorder is known as “recessive” (learn more in the Snapshot on recessive ataxias). For a patient with a dominantly-inherited ataxia, this means that there is a 1-in-2 chance that their children will inherit the disease-causing mutation (assuming that their spouse is unaffected). If both spouses are affected by the same dominantly-inherited disease, this chance increases to 3-in-4. In cases where the child inherits both mutant copies of the gene, the symptoms are often more severe than when a single copy is inherited.

Visual depiction of paragraph above
How dominant disorders are inherited. Illustration by Larissa Nitschke, created with BioRender.

Which ataxias are dominantly-inherited?

The most well-known ataxias with dominant inheritance patterns are the Spinocerebellar Ataxias (SCAs), such as SCA1, SCA2, SCA3, SCA6, and SCA7. Each disease is caused by defects in a different gene. Due to the high similarity in symptoms among all ataxias, genetic testing is often required to determine the exact gene mutation and type of ataxia a patient has.

How can a patient prevent passing on a dominantly-inherited disorder to their children?

There are multiple options to prevent passing on the disease to your child if you are affected by a hereditary ataxia. One potential option is to perform in vitro fertilization (IVF), a technology that is used the conceive embryos outside the human body. The embryos can be screened for genetic mutations, allowing only the healthy embryos to be implanted into the uterus.

If you are affected by a hereditary ataxia and want to prevent having a child with ataxia, it is recommended to talk to your physician and genetic counselor regarding reproductive options.

If you would like to learn more about in vitro fertilization and embryo screening, please take a look at these resources by the University of Pennsylvania. If you want to learn more about dominant ataxia, take a look at these resources by the National Organization for Rare Disorders and Ataxia Canada.

Snapshot written by Larissa Nitschke and edited by Dr. Marija Cvetanovic.

Les yeux, des fenêtres pour voir la fonction cérébrale dans les ataxies spinocérébelleuses

Écrit par Dr Sriram Jayabal, Édité par Dr David Bushart, Traduction française par: L’Association Alatax, Publication initiale: 20 décembre 2019 

Les déficits de mouvement oculaire se produisent de manière omniprésente dans les ataxies spinocérébelleuses, même aux premiers stades de la maladie, soulignant leur importance clinique.

Imaginez les différents mouvements moteurs que vous effectuez dans votre vie quotidienne. Beaucoup de gens pensent aux actions que nous effectuons en utilisant nos mains et nos jambes, comme atteindre des objets ou marcher. Zoomons sur une autre tâche : attraper une balle de baseball. Vous devez savoir où la balle va atterrir pour pouvoir courir jusqu’à cet endroit, puis guider vos bras pendant la plongée, si nécessaire, pour attraper la balle. Pour que cela fonctionne parfaitement, vous devez voir et suivre la balle. Vos yeux vous permettent de suivre la balle pendant qu’elle se déplace. Comment vos yeux peuvent-ils garder le ballon au point pendant que vous courez à pleine vitesse vers l’endroit où vous vous attendez à ce que le ballon atterrisse ? Vos yeux sont équipés de muscles qui permettent aux yeux de bouger afin de garder la scène visuelle au point. Ces mouvements oculaires, comme l’exigent les besoins du scénario actuel, dans ce cas, attraper une balle de baseball, nous sont indispensables pour voir le monde sans aucune entrave.

Woman with hand in a "C" shape in front of her face. She's focusing in on her eye.
Les yeux peuvent fournir une fenêtre sur l’ataxie spinocérébelleuse, avant même que d’autres symptômes n’apparaissent. Photo de fotografierende sur Pexels.com

Quelle région du cerveau nous donne le pouvoir de le faire?

C’est le cervelet qui permet de bouger les bras et les jambes avec précision, contrôle également la façon dont nous bougeons nos yeux. Par conséquent, il est logique d’affirmer que lorsque le cervelet tourne mal, cela peut entraîner des anomalies des mouvements oculaires. Plusieurs études antérieures ont montré que cela était vrai dans de nombreuses ataxies spinocérébelleuses (SCA), où des symptômes non liés à la marche tels que des anomalies des mouvements oculaires se sont avérés accompagner les déficits de la marche aux stades avancés de la maladie. Cependant, des travaux récents de pionniers de la recherche clinique sur l’ataxie à la Harvard Medical School ont montré que les anomalies des mouvements oculaires sont également couramment présentes dans les SCA, même dans les états pré-symptomatiques. Cette étude met l’accent sur la nécessité cruciale de mieux documenter l’historique des déficits des mouvements oculaires et de les suivre tout au long de la progression de la maladie. Cela aidera les chercheurs à développer de meilleures échelles d’évaluation de l’ataxie.

Dans cette étude, une population de patients SCA (134 individus) qui présentaient différents types de SCA (y compris SCA1, SCA2, SCA3, SCA5, SCA6, SCA7, SCA8 et SCA17) ont été évalués pour les anomalies des mouvements oculaires à différents stades de la maladie, du stade pré-symptomatique (sans déficit de marche) au stade avancé (ceux qui utilisent un fauteuil roulant). Premièrement, il a été constaté que ~ 78% de tous les individus pré-symptomatiques présentaient des déficits de mouvement oculaire, et ces déficits sont devenus encore plus courants à mesure que la maladie progressait, où chaque personne à un stade avancé présentait des déficits de mouvement oculaire.

Deuxièmement, lorsque les chercheurs ont examiné de près les mouvements oculaires, ils ont constaté que différents types d’ataxie pouvaient provoquer différents types de déficits des mouvements oculaires.

Cependant, ces résultats ne sont que suggestifs en raison de la faible population d’individus SCA à un stade précoce dans cette étude et des types d’évaluations utilisées. Par conséquent, les études futures nécessiteront une plus grande taille de la population et une analyse quantitative approfondie des types spécifiques de déficits de mouvement oculaire pour aider à caractériser les anomalies du mouvement oculaire dans les SCA. Enfin, la Brief Ataxia Rating Scale (BARS), un test clinique simple récemment conçu pour l’ataxie, a été encore améliorée dans cette étude pour tenir compte des déficits de mouvement oculaire cliniquement observés dans les SCA. Avec une métrique aussi nuancée, un score BARS amélioré s’est révélé corrélé avec le stade, la gravité et la durée de la maladie, quel que soit le type d’ataxie.

Continue reading “Les yeux, des fenêtres pour voir la fonction cérébrale dans les ataxies spinocérébelleuses”

Concevoir une stratégie thérapeutique unique pour traiter plusieurs types d’ataxie spinocérébelleuse

Écrit par Dr David Bushart, Édité par Dr Hayley McLoughlin, Traduction française par: L’Association Alatax, Publication initiale: 3 janvier 2020

Une stratégie de traitement nouvellement proposée pourrait être efficace contre plusieurs formes d’ataxie spinocérébelleuse et d’autres troubles associés aux répétitions CAG.

Lors de la réception d’un diagnostic initial d’ataxie spinocérébelleuse (SCA), un essaim de questions peut pénétrer dans l’esprit du patient. Bon nombre de ces questions porteront probablement sur la façon de gérer et de traiter leur maladie. Quels traitements sont actuellement disponibles pour traiter la SCA? Que puis-je faire pour réduire les symptômes? Le SCA a-t-il un remède, et sinon, les chercheurs sont-ils sur le point d’en trouver un ?

Les patients et les membres de la famille qui lisent SCASource peuvent être en mesure de répondre à certaines de ces questions.

Bien que les scientifiques soient conscients de certaines des causes génétiques sous-jacentes de la SCA et que les patients puissent grandement bénéficier de l’exercice et de la physiothérapie, il n’existe malheureusement aucune thérapie médicamenteuse actuelle qui puisse traiter efficacement ces maladies.

Cependant, c’est une période très excitante dans la recherche sur les SCA, car les chercheurs travaillent dur pour développer de nouvelles stratégies de traitement pour plusieurs des SCA les plus courants. Beaucoup de ces thérapies nouvellement proposées sont spécialisées pour traiter un sous-type génétique spécifique de SCA (par exemple SCA1, SCA3, etc.), ce qui permettrait à ces thérapies d’être très spécifiques. Cependant, ces efforts spécialisés soulèvent une autre question : serait-il possible de traiter différents types de SCA avec la même stratégie thérapeutique ?

sketch of a human brain and spinal cord across a blue background
Croquis de l’artiste d’un cerveau humain. Image reproduite avec l’aimable autorisation de Pixabay.

C’est précisément ce que les chercheurs ont voulu déterminer dans une étude récente, rédigée par Eleni Kourkouta et ses collègues. Ce groupe de chercheurs a utilisé une technologie appelée oligonucléotides antisens (souvent en abrégé ASO, ou AON), pour se demander si un seul ASO pourrait être utilisé pour traiter plusieurs troubles neurologiques qui ont différentes causes sous-jacentes. Actuellement, la plupart des technologies ASO dépendent de notre capacité à cibler sélectivement des gènes spécifiques causant des maladies, ce qui permet à l’ASO de reconnaître et d’agir uniquement sur le gène spécifique qui cause l’ataxie. Une fois reconnus, ces ASO peuvent recruter des machines cellulaires qui abaissent les niveaux d’ARN du gène pathogène, limitant ainsi considérablement la quantité de protéines pathogènes produites (en savoir plus dans notre aperçu de l’ARN, qu’est-ce que l’ARN?). Cette stratégie a le potentiel d’être très efficace pour traiter les SCA associés à l’expansion de la polyglutamine (polyQ).

Cependant, le type de technologie ASO décrit ci-dessus n’est pas le seul moyen de réduire les niveaux des protéines pathogènes dans SCA. Dans cet article, Kourkouta et ses collègues utilisent un type différent d’ASO avec un mécanisme d’action différent, ce qui réduit également les niveaux de la protéine pathogène dans deux SCA différents.

Continue reading “Concevoir une stratégie thérapeutique unique pour traiter plusieurs types d’ataxie spinocérébelleuse”