New Strategy for Reducing Ataxin-1 Levels Shows Promise

Written by Carrie A. Sheeler Edited by Dr. Ronald A.M. Buijsen

RNAi reduces levels of disease-causing Ataxin-1 in SCA1 model mice, easing symptoms of disease when injected both before and after symptom onset.

Lowering the amount of the disease-causing mutant Ataxin-1 protein in affected cells and tissues improves symptoms of disease in spinocerebellar ataxia type 1 (SCA1) mouse models. Like patients with SCA1, mouse models exhibit worsening coordination and degeneration of neurons, beginning in adulthood. Previous work has used genetic manipulation before disease onset (Zu et al 2004). This prevents or delays the onset of disease in SCA1 mouse models. When this is done soon after the onset of symptoms, associated markers of disease are reversed. This suggests that there is a window of time after symptoms start wherein mutant Ataxin-1 can be targeted to improve patient outlook. The 2016 paper by Keiser and colleagues seeks to further study this effect, using RNA interference as a strategy to reduce disease-causing levels of Ataxin-1. As there is no current treatment for Ataxin-1, this is an important step towards assessing possible treatment strategies that could be useful in patients.

female scientist holding a clipboard standing in a laboratory in fornt of a microscope. Books and pictures of neurons line the wall behind her
Cartoon of a scientist reading over results.

Current strategies seek to decrease the amount of Ataxin-1 made in cells by targeting messenger RNA (mRNA)- the blueprints for proteins in a cell- for destruction. RNA interference (RNAi) is one such method which harnesses normal cellular processes to degrade specific mRNAs. In Keiser’s 2016 paper, a modified virus carrying a short sequence of DNA is injected into the brain of a mouse with SCA1. When this virus is injected, the DNA sequence enters the cells of nearby brain regions and stops the production of specific mRNA. In this case, it is Ataxin-1 mRNA that is specifically targeted. As Ataxin-1 mRNA are destroyed, the amount of Ataxin-1 protein made in the cell decreases.

Continue reading “New Strategy for Reducing Ataxin-1 Levels Shows Promise”

Snapshot: What is RNAi?

RNA interference, or RNAi, is a natural biological process that inhibits the expression of a specific gene. In medicine, targeted RNAi therapies can be used to silence the expression of a disease-causing gene. To understand RNAi, you first have to understand RNA.

DNA is transcribed to make mRNA, which is tranlated by the ribosome to make protein.

An overview of  RNA is the messager between the DNA (the instructions) and the protein (the product). RNA is transcribed from the DNA. The ribosome translates the mRNA into protein. Graphic designed by Colleen Stoyas and illustrated by Celeste Suart.

Genes encode the instruction manual of our biology, but this material cannot leave the nucleus of your cells. Think of genes as a lecturer that provides instruction for your homework, which you must copy and take home to use later. The equivalent of copying this message in the cell is RNA, which transcribes the gene instructions and leaves the nucleus to be read and translated into protein. This protein then performs functions within the cell (see above image).

How can RNAi be used in ataxia?

In specific forms of ataxia, a gene mutation may provide the instructions for a protein that acts improperly and leads to disease. RNAi is a method of silencing RNA that interferes with the reading of this message, keeping a protein from being made. It works by generating a small interfering RNA in the laboratory that matches the gene of interest. When this small interfering RNA enters the cell, it binds the matching messenger RNA copied from a gene. When these two RNAs bind, the cell is triggered to cut up the message and destroy it. This means the disease-causing protein is never made. (see below image)

RNAi works by binding the mRNA, preventing it from being transcribed by the ribosome. This stops protein from being made.
How does RNAi work? It binds matching messenger RNA. This stops it from being translated by the ribosome into protein. Graphic designed by Colleen Stoyas and illustrated by Celeste Suart.

While RNAi is straightforward in the lab, getting it to work in humans can be tricky. The small interfering RNA cannot be taken in a pill, because it will not survive digestion. Additionally, the small interfering RNA is degraded along with the target messenger RNA, and so it must be continually administered. Using a viral payload, or encapsulating the interfering RNA in the coat proteins of a virus, has successfully delivered RNAi therapies in mouse models of SCA1, SCA3, and SCA7. In this method the virus integrates into your cells, which can then continue to produce the small interfering RNA. This means a single dose could potentially be all that is needed. Viral delivery to the brain is complicated, but not impossible. More work remains to be done clinically in order to determine if RNAi therapy is viable in a viral payload to treat multiple forms of spinocerebellar ataxia.

If you would like to learn more about RNAi, take a look at this video by TED-ED or entry in the Encyclopedia Britannica.

Snapshot written by Dr. Colleen Stoyas and edited by Frida Niss.

Continue reading “Snapshot: What is RNAi?”