Spotlight: The CMRR Ataxia Imaging Team

Location: University of Minnesota, MN, USA

Year Research Group Founded:  2008

What models and techniques do you use?

A photo of the CMRR Ataxia Imaging Team
A photo of the CMRR Ataxia Imaging Team in 2019. Front row, left to right – Diane Hutter, Christophe Lenglet (PI), Gulin Oz (PI), Katie Gundry, Jayashree Chandrasekaran Back row, left to right: Brian Hanna, James Joers, Pramod Pisharady, Kathryn France, Pierre-Gilles Henry (PI), Dinesh Deelchand, Young Woo Park, Isaac Adanyeguh (insert)

Research Group Focus

What shared research questions is your group investigating?

We use high field, multi-nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) to explore how diseases impact the central nervous system. These changes can be structural, functional, biochemical and metabolic alterations. For example, we apply advanced MRI and MRS methods in neurodegenerative diseases and diabetes.

We also lead efforts in research taking place at multiple different cities across the United States and the world. As you can imagine, studies spread out across such a big area require a lot of coordination and standardization. We design robust MRI and MRS methods to be used in clinical settings like these.

Another important question for our team is how early microstructural, chemical and functional changes can be detected in the brain and spinal cord by these advanced MR methods. We are interested in looking at these changes across all stages of disease.

Why does your group do this research?

The methods we use (MRI and MRS) can provide very helpful information to be used in clinical trials. These biomarkers we look at can provide quantitative information about how a disease is progressing or changing.

There is good evidence that subtle changes in the brain can be detected by these advanced MR technologies even before patients start having symptoms. If we better understand the earliest changes that are happening in the brain, this can in turn enable interventions at a very early stage. For example, we could treat people even before brain degeneration starts to take place.

Why did you form a research group connecting multiple labs?

We came together to form the CMRR Ataxia Imaging Team to benefit from our shared and complementary expertise, experience, and personnel. We can do more together than we could apart.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for multiple different studies. You can learn more about the research we are recruiting for at the following links: READISCA,  TRACK-FA, NAF Studies, and FARA Studies. More information is also available through the UMN Ataxia Center.

A photo of the CMRR Ataxia Imaging Team in 2016
A photo of the CMRR Ataxia Imaging Team in 2016, in front of the historic 4T scanner where the first functional MR images were obtained, in CMRR courtyard. Left to right – Christophe Lenglet (PI), Sarah Larson, Gulin Oz (PI), Dinesh Deelchand, Pierre-Gilles Henry (PI), James Joers, Diane Hutter

What Labs Make Up the CMRR Ataxia Imaging Team?

The Oz Lab

Principal Investigator:  Dr. Gulin Oz

Year Founded:  2006

Our focus is on MR spectroscopy, specifically neurochemistry and metabolism studies. We focus on spinocerebellar ataxias. Also, we have been leading MRS technology harmonization across different sites and vendors.

The Henry Lab

Principal Investigator: Dr. Pierre-Gilles Henry

Year Founded:  2006

We develop advanced methods for MR spectroscopy and motion correction. Then apply these new methods to the study of biochemistry and metabolism in the brain and spinal cord in various diseases. We have been working on ataxias since 2014.

Fun Fact about the Henry Lab: The French language can often be heard in discussions in our lab!

The Lenglet Lab

Principal Investigator:  Dr. Christophe Lenglet

Year Founded:  2011

We develop mathematical and computational strategies for human brain and spinal cord connectivity mapping. We do this using high field MRI. Our research aims at better understanding the central nervous system anatomical and functional connectivity. We are especially interested in looking at this in the context of neurological and neurodegenerative diseases.

Fun Fact

Members of our team have their roots in 7 countries (US, Turkey, France, India, Mauritius, South Korea, Ghana) and 4 continents (North America, Europe, Asia, Africa)

For More Information, check out the Center for Magnetic Resonance Research (CMRR) Website!


Written by Dr. Gulin Oz, Dr. Pierre-Gilles Henry, and Dr. Christophe Lenglet, Edited by Celeste Suart

Spotlight: The Kuo Lab

Principal Investigator: Dr. Sheng-Han Kuo

Location: Columbia University, New York, NY, United States

Year Founded:  2012

What disease areas do you research?

What models and techniques do you use?

Kuo Lab group photo.
This is a group picture of the Kuo Lab. From the left to right: Nadia Amokrane, Chi-Ying (Roy) Lin, Sara Radmard, Sheng-Han Kuo (PI), Chih-Chun (Charles) Lin, Odane Liu, Chun-Lun Ni , Meng-Ling Chen, Natasha Desai, David Ruff.

Research Focus

What is your research about?

We study how mishaps and damage in the cerebellum lead to the symptoms experienced by ataxia and tremor patients. By looking at human brains, as well as brains from mouse models, we study how different changes in brain structure can lead to symptoms. This includes how well different parts of the brain can communicate with each other.

Why do you do this research?

When you ask patients about the challenges living with ataxia or tremor, they will talk to you about their symptoms. Symptoms can make different activities of daily living very challenging! By connecting specific brain changes to specific symptoms, we want to develop treatment options that target specific diseases. By doing this, we hope to improve patient’s quality of life. 

Initiative for Columbia Ataxia and Tremor Logo. It is a circle containing a lion with its whiskers to look like a neuron

The Kuo lab is part of the Initiative for Columbia Ataxia and Tremor. It’s a new Initiative at Columbia University to bring a group of physicians, scientists, surgeons, and engineers to advance the knowledge of the cerebellum and to develop effective therapies for ataxia and tremor.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for clinical research and trials. You can learn more about the studies we are currently recruiting for at this link.

Fun Fact

In the Kuo Lab, we call ourselves “the Protector of the Cerebellum in New York City”.

For More Information, check out the Kuo Lab Website!

We are looking for new graduate students and postdoctoral researchers to join our team. If you are interested in our work, please reach out to us


Written by Dr. Sheng-Han Kuo, Edited by Celeste Suart

Spotlight: The Zoghbi Lab

Baylor College of Medicine

Principal Investigator: Dr. Huda Zoghbi

Location: Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA

Year Founded:  1988

Logo: Texas Children's Hospital. Jan and Dan Duncan Neurological Research Institute

What models and techniques do you use?

Research Focus

What is your research about?

Our laboratory uses multiple methods to explore the underlying causes of different neurodegenerative and neurodevelopmental disorders. Some diseases we study affect children, like Rett Syndrome. Others affect adults, like spinocerebellar ataxia type 1 (SCA1), Alzheimer’s disease (AD) and Parkinson’s disease (PD). We also research how healthy brains grow and develop.

We first seek to understand the mechanism by which a mutant protein causes disease, allowing us to more thoughtfully and effectively develop therapeutic options for the diseases we study. Our work in SCA1 demonstrated that lowering levels of the disease-driving protein is beneficial in the course of disease, informing our approach to the study of other diseases of the brain.  

Why do you do this research?

We do this research to help the patients, families and caregivers affected by the diseases we study. Most of the disorders we study currently have no or very few treatment options available, and we hope to help in changing that.

Our lab began with Dr. Zoghbi seeing patients in the clinic who were diagnosed with Rett Syndrome and SCA1. Work with these patients allowed for the discovery of the genes causing these diseases. Today, we hope to aid in understanding how these diseases work and to develop therapies that can then be brought back to the clinic for patients. Furthermore, we hope our findings and the tools we’ve developed will aid in the study of other neurodevelopmental and neurodegenerative disorders.

A group picture of the Zoghbi Lab
Zoghbi Lab members at Hermann Park in Houston, TX in 2021. Bottom row L-R: Y. Sun, W. Wang, W. Lee, M. Zaghlula, H. Lee, S. Coffin, S. Wu, J. Butts, C. Adamski, H. Zoghbi (PI), Y. Shao, J. Johnson, J. Zhou, A. Tewari, H. Palikarana Tirumala, J. Lopez, Top row L-R: A. Anderson, E. Xhako, E. Villavicencio, Y. Li, S. Bajikar, M. Durham.

Fun Fact

On April 8, 1993, both Dr. Huda Zoghbi and Dr. Harry Orr identified the gene, ATXN1, which when mutated, is responsible for causing SCA1. You can read about this discovery here.

For More Information, check out the Zoghbi Lab website!


Written by Stephanie Coffin, Edited by Celeste Suart

Regulating ataxin-1 expression as a therapeutic avenue for SCA1

Written by Dr. Hannah Shorrock   Edited by Dr. Hayley McLoughlin

Nitschke and colleagues identify a microRNA that regulates ataxin-1 levels and rescues motor deficits in a mouse model of SCA1

What if you could use systems already in place in the cell to regulate levels of toxic proteins in disease? This is the approach that Nitschke and colleagues took to identify the cellular pathways that regulate ataxin-1 levels. Through this strategy, the group found a microRNA, a small single-stranded RNA, called miR760, that regulates levels of ataxin-1 by directly binding to its mRNA and inhibiting expression. By increasing levels of miR760 in a mouse model of SCA1, ataxin-1 protein levels decreased and motor function improved. This approach has the potential to identify possible therapies for SCA1. It may also help identify disease-causing mutations in ataxia patients with unknown genetic causes.

Spinocerebellar Ataxia type 1 (SCA1) is an autosomal dominant disease characterized by a loss of coordination and balance. SCA1 is caused by a CAG repeat expansion in the ATXN1 gene. This results in the ataxin-1 protein containing an expanded polyglutamine tract. With the expanded polyglutamine tract, ataxin-1 is toxic to cells in the brain and leads to dysfunction and death of neurons in the cerebellum and brainstem.

As with all protein-coding genes, surrounding the protein coding region of ATXN1 gene are the 5’ (before the coding sequence) and 3’ (after the coding sequence) untranslated regions (UTRs). These regions are not translated into the final ataxin-1 protein product but are important for the regulation of this process. Important regulation factors called enhancers and repressors of translation located in 5’ and 3’ UTRs. ATXN1 has a long 5’ UTR. Genes that require fine regulation, such as growth factors, are often found to have long 5’ UTRs: the longer a 5’ UTR, the more opportunity for regulation of gene expression. The group, therefore, tested the hypothesis that the 5’ UTR is involved in regulating the expression of ataxin-1.

In their initial studies, Nitschke and colleagues identified that the ATXN1 5’UTR is capable of reducing both protein and RNA levels when placed in front of (5’ to) a reporter coding sequence. One common mechanism through which this regulation of gene expression could be occurring is the binding of microRNAs, or miRNAs, to the ATXN1 5’UTR. miRNAs are short single-stranded RNAs that form base pairs with a specific sequence to which the miRNA has a complementary sequence; this leads to regulation of expression of the mRNA to which the miRNA is bound.

3d illustration of single-strand ribonucleic acid
Artist drawing of single-stranded RNA. Photo used under license by nobeastsofierce/Shutterstock.com.

Using an online microRNA target prediction database called miRDB, the group identified two microRNAs that could be responsible for these changes in gene expression through binding to the ATXN1 5’ UTR. By increasing the expression of one of these microRNAs, called miR760, ataxin-1 protein levels were reduced in cell culture. Conversely, using a miR760 inhibitor so that the miRNA could not perform its normal functions led to increased levels of ataxin-1. Together this shows that miR760 negatively regulates ataxin-1 expression.

Continue reading “Regulating ataxin-1 expression as a therapeutic avenue for SCA1”

Identifying FDA-approved molecules to treat SCA6

Written by Dr Hannah Shorrock Edited by Dr. Larissa Nitschke

Pastor and colleagues identify FDA-approved small molecules that selectively reduce the toxic polyglutamine-expanded protein in SCA6.

Selectively targeting disease-causing genes without disrupting cellular functions is essential for successful therapy development. In spinocerebellar ataxia type 6 (SCA6), achieving this selectivity is particularly complicated as the disease-causing gene produces two proteins that contain an expanded polyglutamine tract. In this study, Pastor and colleagues identified several Food and Drug Administration (FDA) approved small molecules that selectively reduce the levels of one of these polyglutamine-containing proteins without affecting the levels of the other protein, which is essential for normal brain function. By using drugs already approved by the United States Food and Drug Administration to treat other diseases, referred to as FDA-approved drugs, the team hopes to reduce the time frame for pre-clinical therapy development.

SCA6 is an autosomal dominant ataxia that causes progressive impairment of movement and coordination. This is due to the dysfunction and death of brain cells, including Purkinje neurons in the cerebellum. SCA6 is caused by a CAG repeat expansion in the CACNA1A gene. CACNA1A encodes two proteins: the a1A subunit, the main pore-forming subunit of the P/Q type voltage-gated calcium ion channel, as well as a transcription factor named a1ACT.

The a1A subunit is essential for life. Its function is less affected by the presence of the expanded polyglutamine tract than that of a1ACT. The transcription factor, a1ACT, controls the expression of various genes involved in the development of Purkinje cells. Expressing a1ACT protein containing an expanded polyglutamine tract in mice causes cerebellar atrophy and ataxia. While reducing levels of the a1A subunit may have little effect on SCA6 disease but impact normal brain cell function, reducing levels of a1ACT may improve disease in SCA6. Therefore, Pastor and colleagues decided to test the hypothesis that selectively reducing levels of the a1ACT protein without affecting levels of the a1A protein may be a viable therapeutic approach for SCA6.

Colorful pile of medicines in blister packs which color are White, Yellow, Black and Pink pills.
By using drugs already approved by the FDA, the team hopes to reduce the time frame for pre-clinical therapy development. Photo used under license by Wanchana Phuangwan/Shutterstock.com.
Continue reading “Identifying FDA-approved molecules to treat SCA6”