Mitochondrial Dysfunction Found in SCA1 Purkinje Cells

Written by Dr. Terri M Driessen Edited by Dr. David Bushart

Mitochondrial dysfunction and loss of mitochondrial DNA is identified in an SCA1 mouse model.

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder that causes cell death in certain parts of the brain. The brain regions affected play important roles in motor coordination. The loss of coordination and movement – a symptom called ataxia – is the one of the primary effects of this disease. To investigate the causes of SCAs, researchers often use mouse models. In mouse models of SCA1, there are deficits in motor coordination before a significant amount of neurons (i.e., brain cells) are lost. This suggests that changes in neuron function, and not necessarily neuron death, may cause behavioral changes in SCA1. However, the mechanisms that cause dysfunction in SCA1 neurons are still a mystery.

Diagram of neuron, highlighting the nucleus, cytoplasm, golgi apparatus, membrane, mitochondria, microtubules, myelin sheath, lysosome, smooth ER, rough ER, dendritic spines, and dendrite.
Image courtesy of Blausen Medical on Wikimedia Commons.

The brain requires a lot of energy to function. Without this energy, our neurons would be unable to survive. The cellular machines that generate this energy are the mitochondria, which are small organelles found in neurons (and nearly every other type of cell, for that matter). If the mitochondria in neurons do not function properly, this could lead to abnormal neuronal functioning. In fact, mitochondrial dysfunction has been found in several neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis (ALS, or Lou Gehrig’s disease), Spinal Muscular Atrophy, Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Previous studies have also linked mitochondrial dysfunction to SCA1. It has been shown that Purkinje cells, the major cell type affected in SCA1, have altered levels of mitochondria-related RNA and proteins in SCA1 mouse models (Stucki, et al. 2016; Ferro, et al. 2017).

Continue reading “Mitochondrial Dysfunction Found in SCA1 Purkinje Cells”

Where Should We Look to Detect SCA3 Pathology and Progression?

Written by Jorge Diogo Da Silva Edited by Dr. Maria do Carmo Costa

Potential drug targets and biomarkers of SCA3/MJD revealed

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a debilitating neurodegenerative disease that usually begins in mid-life. The mutation that causes SCA3 leads to the production of an abnormally large stretch in the gene’s encoded protein, ataxin-3. This irregular ataxin-3 becomes dysfunctional and starts to bundle into toxic aggregates in the brain. SCA3 patients experience a lack of movement coordination, especially when it comes to maintaining their balance while standing or walking, which worsens over time. Currently, there is no cure, effective preventive treatment, or method of monitoring the progression of SCA3. While finding a treatment for SCA3 is undoubtedly needed, identifying markers that are only present in individuals that carry the SCA3 mutation is also critical – it allows researchers and clinicians to track how the disease is progressing, even if the carriers do not show disease symptoms. The use of disease markers is especially important in evaluating the effectiveness of a therapeutic agent during the course of a clinical trial (in this case, one that includes pre-symptomatic carriers).

Textbook diagram of brain
Diagram of the human brain. Picture courtesy of Internet Archive Book Images

The protein ataxin-3 plays many roles in cells, including in transcription – the process by which genes (made of DNA) are transformed into RNA, which in turn encodes all the proteins that are essential to maintaining normal body function. Because the abnormally large ataxin-3 is somehow dysfunctional in SCA3, accurate transcription of genes could be affected. Hence, the authors of this study have looked at transcription in several brain regions in a mouse model of SCA3. These mice harbor the human mutant ataxin-3 gene in their DNA and replicate some of the symptoms that patients experience. In general, this kind of investigation can help provide clues for potential therapeutic strategies, which could work by normalizing the transcription of disease-affected genes. In addition, it can allow researchers to better characterize SCA3-affected genes, which could be used to monitor disease progression if one or more of these genes are affected differently at different stages of the disease. The authors also searched for potential dysregulation of other molecules in the blood of these mice, such as sugars and fats, which is another way disease progression could be monitored. This is particularly useful for patients, as a blood test is much less invasive than any kind of brain analysis. Here, researchers tested blood samples of mice at different ages, as well as brain samples from 17.5-month-old mice (roughly equivalent to a 50-year-old human).

Continue reading “Where Should We Look to Detect SCA3 Pathology and Progression?”

Approaching the age of clinical therapy for spinocerebellar ataxia type 1

Written by Dr. Marija Cvetanovic Edited by Dr. Maxime W. Rousseaux

New research (published Nov. 2018) reveals promising potential genetic therapy for SCA1.

A research team comprised of scientists from academia and industry have tested a new treatment for Spinocerebellar ataxia type 1 (SCA1), bringing disease-modifying therapy one step closer to the clinic. SCA1 is a dominantly-inherited ataxia that is currently untreatable. Symptoms of the disease include progressive loss of balance, slurring of speech, difficulties with swallowing and coughing, mild cognitive impairments, and depression. With a life expectancy after diagnosis of only 10-15 years, SCA1 is one of the fastest-progressing SCAs: after symptoms first appear, patients typically have just over a decade before these symptoms become so severe that they cause death (often due to respiratory failure). In 1993, collaborative efforts from the laboratories of Drs. Harry T. Orr and Huda Y. Zoghbi discovered that SCA1 is caused by the expansion of a CAG repeat somewhere in a patient’s DNA. CAG repeats cause a polyglutamine expansion in the protein that the mutated gene encodes; in this case, the group later identified that this had occurred in Ataxin-1 (ATXN1), the gene that encodes the ATXN1 protein. The SCA1 mouse models that Drs. Orr and Zoghbi generated (and graciously shared with the scientific community) have allowed for significant advances in the understanding of SCA1 pathogenesis over the years. Now, they provide preclinical evidence of a promising therapy to alter the progressive motor deficits and fatal outcome of SCA1.

stethoscope on top of laptop
Photo by Pixabay on Pexels.com

Continue reading “Approaching the age of clinical therapy for spinocerebellar ataxia type 1”

A novel therapeutic approach for the treatment of SCA3

Written by Larissa Nitschke Edited by Dr. Gülin Öz

Researchers in the Netherlands uncover a new way to treat SCA3

Upon receiving a conclusive diagnosis of Spinocerebellar Ataxia (SCA), hundreds of questions can appear in a patient’s mind: What is Spinocerebellar Ataxia? Why am I affected? How will my symptoms progress? What is the ultimate prognosis? Thankfully, years of research have enabled us to answer many of these questions for patients affected by Spinocerebellar Ataxia Type 3 (SCA3), also known as Machado-Joseph Disease. Still, the most important question a patient could ask – How can I be healthy again? – has remained unanswered.

SCA3 is the most common form of Spinocerebellar Ataxia worldwide. It is passed down from generation to generation in affected families. Initial symptoms typically appear around midlife, but cases of much earlier and much later onset have been reported. At first, problems with movement coordination are the most noticeable, leading to an increase in stumbles and falls. At later stages, speech difficulties, muscle stiffness, and sleeping problems appear, leaving the patient fatigued during the day. The symptoms worsen over the course of 10 to 20 years, at which point affected individuals typically succumb to the disease. As with other SCAs, current options for SCA3 treatment are mainly limited to symptom management rather than treating the direct cause of the disease.

Artist's representation of DNA
Artist’s representation of DNA. Photo from Pixabay.

The genetic cause of SCA3 is the presence of excess copies of the DNA building blocks cytosine (C), adenine (A), and guanine (G) in the Ataxin-3 gene (Atxn3). Scientists refer to this type of mutation as an expansion of a triplet repeat, since the C, A, and G copies appear as sets of back-to-back CAGs. Because the CAG triplet is responsible for coding the amino acid glutamine (Gln or Q) in the Ataxin-3 protein, the repeat expansion results in an elongated glutamine (polyQ) tract. This faulty protein accumulates in cells and causes toxicity in specific regions of the brain. Since the 1994 discovery that SCA3 is caused by a polyQ expansion in Atxn3, scientists and physicians all over the world have been humbled by the question of how to help patients affected with SCA3. One specific angle of research has focused on the removal of the toxic protein altogether. However, one downside of this approach is that it would also cause the loss of normal Atxn3 function in patients. Atxn3 is critical for the degradation of unwanted proteins, which is necessary for the healthy functioning of all our body’s cells. It normally binds to little marks on proteins called ubiquitin chains (which tag proteins for removal), then cleaves these chains to facilitate the entry of proteins into the cell’s destruction machinery. Since treatment will need to be sustained over the span of a patient’s lifetime, the complete removal of Atxn3 might be harmful.

Continue reading “A novel therapeutic approach for the treatment of SCA3”

ASOs clear toxic protein from cells, reducing ataxia in SCA2 mice

Written by Anna Cook and Dr. Alanna Watt Edited by Dr. Vitaliy V. Bondar

Scientists uncover a promising therapeutic avenue to treat spinocerebellar ataxia type 2 (SCA2).

Spinocerebellar ataxia type 2 (SCA2) is a progressive ataxia caused by a mutation in the ATXN2 gene. This mutation causes a tract of the amino acid glutamine in the ataxin 2 protein to expand, making it toxic to cells. This type of mutation – known as a polyglutamine expansion – is common to several neurodegenerative diseases, including Huntington’s Disease and several forms of ataxia. One treatment strategy that has been devised for polyglutamine diseases such as SCA2 is to remove the toxic protein from cells. And, in their tour de force SCA2 paper from 20171, this is precisely what Scoles and colleagues attempted to do. Removing protein levels is a particularly promising strategy for SCA2, since previous research from the authors of this paper has shown that a complete loss of healthy ataxin 2 protein in cells does not cause any major detectable behavioural consequences in mice2.

Removing a toxic protein from a cell is not a simple task; in fact, it has only been done a handful of times in models of neurodegeneration. One way to eliminate a protein in neurons is to cause the RNA that encodes it to be degraded before it can make the protein. Through a collaboration with a company that specializes in this approach — Ionis Pharmaceuticals — the authors created their own short RNA molecules that matched the sequence and therefore bound to regions in the specific RNA that encodes the protein ataxin 2. These small molecules are known as anti-sense oligonucleotides (ASOs), and once they bind to their partner, they recruit the cell’s waste system to degrade the RNA. Currently, ASO therapy is one of the most promising methods researchers have developed to eliminate toxic proteins for a wide range of degenerative diseases.

blue stethoscope next to laptop computer
Image of stethoscope next to a computer. Photo by Negative Space on Pexels.com

After designing many of these molecules, the authors screened 152 different ASOs to determine which were most effective at lowering levels of the toxic protein. ASOs were applied to skin cells that had been donated by SCA2 patients, and levels of mutated ataxin 2 protein were measured. By picking out the designs that caused the greatest decrease in ataxin 2 levels, the authors narrowed down the original group of potential ASOs to give a shortlist of promising candidates. The authors then chose one ASO (ASO7) to test in mouse models of SCA2.

Continue reading “ASOs clear toxic protein from cells, reducing ataxia in SCA2 mice”