Aperçu Rapide: Que signifie le succès dans les essais cliniques avec des oligonucléotides antisens (ASO) ?

La recherche avance rapidement pour traiter les troubles neurologiques héréditaires de tous types, y compris les ataxies spinocérébelleuses. SCAsource a déjà étudié la science derrière la thérapie ASO. Ces maladies partagent une théorie commune selon laquelle la mutation de l’ADN conduit à la formation d’une protéine altérée qui est toxique. La thérapie ASO est destinée à arrêter la formation de la protéine toxique en « tirant sur le messager ».

Qu’est-ce qui est impliqué dans ces essais cliniques?

Pour voir ce qui pourrait arriver dans les essais cliniques d’ataxie, regardons les essais d’ASO qui se déroulent actuellement dans les maladies polyglutamines apparentées. Dans la maladie de Huntington (HD), deux programmes sont actuellement en cours d’essais cliniques. Les autorités réglementaires considèrent les ASO comme des médicaments et exigent que le produit soit à la fois sûr et efficace chez les patients.

Les ASO ne peuvent pas être administrés sous forme de pilules et ils sont actuellement injectés dans le liquide céphalo-rachidien. C’est ce qu’on appelle l’administration intrathécale pour obtenir le médicament directement dans l’espace liquide où il peut retourner dans le cerveau. Les patients des études de phase 1 en HD sont invités à effectuer jusqu’à 7 injections et un programme de phase 3 nécessite des injections tous les deux mois pendant 2 ans. Cela implique un grand engagement envers l’étude et demande beaucoup aux patients et à leurs familles.

La seule étude publiée en double aveugle de phase 1 contrôlée contre placebo en HD (Tabrizi et al., New England Journal of Medicine, 2019) a identifié qu’une série de 4 injections étaient sans danger. Ils ont mesuré les changements de la « mauvaise » protéine dans le liquide céphalo-rachidien comme une preuve de concept que les ASO pourraient abaisser les niveaux de protéines. La bonne nouvelle, c’est qu’ils ont constaté une réduction liée à la dose de cette protéine d’environ 40%. Les patients de cette étude se sont vu proposer des injections mensuelles « en ouvert », ce qui a montré une réduction de 60 % de la protéine anormale selon une présentation récente. Les extensions en ouvert sont lorsque les patients peuvent continuer à prendre un médicament après la fin de la période d’essai clinique.

docteur en blouses bleues et une blouse blanche tenant un stéthoscope. Ils sont de côté, donc seul leur corps peut être vu, sans leur visage.
À quoi ressembleront les essais cliniques d’ataxie impliquant des ASO à l’avenir? À quoi ressemblera le succès?

Alors, que signifie le succès ?

Les études de phase 3 actuellement en cours dans la MH sont conçues pour voir s’il y a un ralentissement de la progression de la maladie. Ceci est mesuré en évaluant le changement des symptômes moteurs, cognitifs et comportementaux au fil du temps. Les changements se produisent lentement en HD et SCA. Par conséquent, un grand nombre de patients sont nécessaires sur une période d’étude relativement longue.

En fin de compte, une étude réussie qui montre un ralentissement de la progression de la maladie signifie probablement que les patients ne connaîtront aucune amélioration évidente pendant le traitement et qu’ils continueront à présenter des symptômes progressifs au fil du temps. Espérons que ce sera à un rythme plus lent par rapport au groupe placebo. Puisqu’il n’y a aucun traitement disponible pour SCA ou HD, ce sera le bienvenu. Il n’est en aucun cas considéré comme un remède ou susceptible d’arrêter la progression. Les vrais remèdes en médecine sont rares, où un remède est défini comme une maladie mettant fin aux médicaments.

Graphique des symptômes en fonction du temps. La ligne de "progression typique" présente plus de symptômes plus rapidement. La ligne «progression retardée après traitement potentiel» présente moins de symptômes, mais augmente toujours avec le temps.
Graphique expliquant comment un traitement ASO potentiel pourrait fonctionner à l’avenir. Bien que cela puisse ne pas faire disparaître complètement les symptômes, cela pourrait réduire la gravité des symptômes, le nombre de symptômes et / ou le délai d’apparition des premiers symptômes. Illustration de Celeste Suart.

Dans la communauté de la recherche HD, nous posons des questions qui incluent :

  1. Est-ce une bonne idée de réduire la bonne protéine qui fait partie de notre chimie cérébrale normale ? Dans l’étude de phase 3 actuelle, l’ASO réduit à la fois la « bonne » et la « mauvaise » protéine HD. Un autre programme de la phase 1 utilise un ASO qui ne fait que réduire la «mauvaise» protéine.
  2. Quel est le meilleur moment pour utiliser la thérapie ASO ? Étant donné que ces conditions sont associées à des dommages et à des pertes de cellules nerveuses, il est logique d’utiliser ces types de thérapie très tôt, avant même que les dommages ne surviennent. Cela signifie que les patients présentant des symptômes modérés ou avancés peuvent ne pas être de bons candidats pour le traitement par ASO.
  3. Devrions-nous envisager un traitement chez les personnes qui ont subi des tests génétiques prédictifs avant le début des symptômes ? Cette question est activement débattue, mais il est trop tôt pour en tenir compte. Nous devons montrer que les ASO sont sûrs et efficaces chez les patients symptomatiques. Nous devons avoir de bonnes mesures pour déterminer si les traitements fonctionnent. Les autorités réglementaires ont exigé des preuves que les traitements ont un effet positif sur la vie des patients. Cela peut être difficile à démontrer dans une courte étude. Nous devons considérer qu’il faut des décennies aux patients pour obtenir ces maladies: ralentir ou arrêter cela pourrait prendre aussi longtemps.

Nous ne pouvons trouver les réponses à ces questions que dans les essais cliniques. Ces essais visent à améliorer la qualité de vie des gens. Pour ce faire, nous avons besoin d’informations de vraies personnes atteintes de ces maladies, et pas seulement de modèles de maladie. Il s’agit d’un processus qui prendra du temps mais nous dira quelle approche est la plus prometteuse et mérite d’être poursuivie plus rapidement. Ainsi, les patients et les familles à ce stade sont tout aussi importants que les chercheurs en blouse de laboratoire travaillant ensemble pour traiter ces maladies.

Si vous souhaitez en savoir plus sur les essais cliniques, consultez cette ressource de la FDA ou notre précédent article sur le sujet.

Écrit par le Dr Mark Guttman, Édité par le Dr Ray Truant, Traduction française par: L’Association Alatax, Publication initiale: 13 décembre 2019

A Potential Treatment for Universal Lowering of all Polyglutamine Disease Proteins

Written by Frida Niss Edited by Dr. Hayley McLoughlin

One drug to treat them all: an approach using RNA interference to selectively lower the amount of mutant protein in all polyglutamine diseases. Work by a group in Poland shows initial success in Huntington’s Disease, DRPLA, SCA3/MJD, and SCA7 patient cells.

Can one drug treat nine heritable and fatal disorders? Polyglutamine diseases are disorders in which a gene encoding a specific protein is expanded to include a long CAG repeat. This results in the protein having a long chain of the amino acid glutamine, which disturbs the ability of the protein to fold itself and interact correctly with other proteins. This type of malfunctioning protein would normally be degraded by the cell, but in the case of polyglutamine proteins this seems unusually difficult. This causes a gradual build-up of faulty protein that disrupts several cellular pathways, eventually leading to cell death in sensitive cells. Currently there is only symptomatic treatment of these fatal diseases available, and they do not slow down the disease progression. One promising line of research is investigating the possibility of lowering the amount of these disease proteins using RNA interference.

RNA interference is the method by which a gene is silenced through a manipulation of a natural defense mechanism against viruses. When a virus attacks, it tries to inject DNA or RNA like particles to hijack the cell’s machinery for its own survival. To defend itself, the cell uses the RNA interference pathway, where the protein Dicer slices the DNA/RNA into smaller pieces and loads it into the RNA-induced silencing complex (RISC complex). The RISC complex finds all DNA/RNA particles in the cell with the same sequence and destroys them, effectively hamstringing the virus.

This machinery can be co-opted as a potential tool for treating neurodegenerative diseases caused by harmful mutant proteins. By inserting a small interfering RNA (siRNA), we can target the mRNA that codes for the harmful protein and trick the RISC complex into degrading it. In polyglutamine diseases, this has been successful when the mutant mRNA possesses a small mutation called a single nucleotide polymorphism (SNP). However, when an siRNA is delivered to a cell using a vector, which is a circular piece of DNA carrying genetic material, the Dicer protein tends to process the siRNA in unpredictable ways. This means that the treatment may not always be selective, and can end up targeting the normal protein as well. Moreover, not all patients have the same SNPs, so several drugs for every disease might be needed.

A pipette transfering liquid between small centifuge tubes
Close up picture of scientific research being conducted in a laboratory. Image courtesy of the University of Michigan SEAS.

In the paper by Kotowska-Zimmer and colleagues they have used short hairpin RNAs (shRNAs) targeting the CAG repeat tract itself instead of siRNAs targeting SNPs around the CAG repeat tract. shRNAs fold themselves like a hairpin when transcribed, and this loads them into the RISC complex through a somewhat different pathway, with less degradation along the way than conventional siRNAs. The second part that is different to other RNA interference strategies in this study is that the shRNA does not completely match the CAG repeat, but contains mismatches. This means that the RISC complex cannot actually cut and degrade the mRNA, and ends up simply sitting on the CAG repeat tract instead. The longer the repeat tract, the more RISC complexes can fit on the tract and block translation. Using this type of RNA interference Kotowska-Zimmer and colleagues have tried to lower the expression of huntingtin, atrophin-1, ataxin-3 and ataxin-7 proteins in cellular models of the corresponding polyglutamine diseases.

Continue reading “A Potential Treatment for Universal Lowering of all Polyglutamine Disease Proteins”

La huntingtine: un nouvel acteur dans l’arsenal de la réparation de l’ADN

Écrit par Dr. Ambika Tewari, Edité par Dr. Mónica Bañez-Coronel, Traduction française par: L’Association Alatax, Publication initiale: 22 novembre 2019

Des mutations dans la protéine huntingtine altèrent la réparation de l’ADN, causant des dommages importants à l’ADN et une expression génétique modifiée.

Notre génome regroupe l’intégralité de notre matériel génétique, qui contient les instructions pour fabriquer les protéines essentielles à tous les processus de l’organisme. Chaque cellule de notre corps, des cellules de la peau qui constituent une barrière de protection essentielle, des cellules immunitaires qui nous protègent des espèces envahissantes et des cellules du cerveau qui nous permettent de percevoir et de communiquer avec le monde contient du matériel génétique. Au début du développement de chaque espèce de mammifère, il existe une prolifération massive de cellules qui permet le développement d’un embryon au stade une cellule à un corps fonctionnel contenant des trillions de cellules. Pour que ce processus se déroule de manière efficace et fiable, les instructions contenues dans notre matériel génétique doivent être transmises avec précision pendant la division cellulaire et son intégrité maintenue pendant toute la durée de vie de la cellule afin de garantir son bon fonctionnement.

De nombreux obstacles entravent la séquence complexe et hautement orchestrée d’événements au cours du développement et du vieillissement, provoquant des altérations pouvant entraîner un dysfonctionnement cellulaire et une maladie. Les sources de dommages à l’ADN internes et externes bombardent constamment le génome. Les rayonnements ultraviolets et l’exposition à des agents chimiques sont des exemples de sources externes, tandis que les sources internes incluent les processus cellulaires pouvant découler, par exemple, des sous-produits réactifs du métabolisme.

Heureusement, la nature a mis au point un groupe spécial de protéines, appelées protéines de réparation et de réparation de l’ADN, qui permettent aux détecteurs de détecter les messages erronés. Ces protéines spécialisées garantissent que les dommages aux molécules d’ADN qui codent nos informations génétiques ne sont pas transmis à la nouvelle génération de cellules lors de la division cellulaire ou lors de l’expression de nos gènes, protégeant ainsi notre génome. De nombreux troubles génétiques sont causés par des mutations du matériel génétique. Cela conduit à un ARN ou une protéine dysfonctionnel avec peu ou pas de fonction (perte de fonction) ou à un ARN ou une protéine avec une fonction entièrement nouvelle (gain de fonction). Étant donné que les protéines de réparation de l’ADN jouent un rôle crucial dans l’identification et le ciblage des erreurs commises dans le message, il va de soi que toute altération du processus de réparation de l’ADN pourrait conduire à une maladie. Dans cette étude, Rui Gao et ses collègues, par le biais d’une vaste collaboration, ont cherché à comprendre le lien qui existe entre la réparation de l’ADN modifiée et la maladie de Huntington.

 

Un dessin de molécules d'ADN bleues.
Un dessin de molécules d’ADN.

Continue reading “La huntingtine: un nouvel acteur dans l’arsenal de la réparation de l’ADN”

Snapshot: What Does Success Mean in Clinical Trials with Antisense Oligonucleotides (ASO)?

Research is rapidly moving from the bench to the bedside to treat neurological inherited disorders of all types, including spinocerebellar ataxias. SCAsource has previously gone over the science behind ASO therapy. These diseases share a common theory that the DNA mutation leads to the formation of an altered protein that is toxic. ASO therapy is meant to stop the formation of the toxic protein by “shooting the messenger”.

What is involved in these clinical trials?

To see what might happen in ataxia trials, let’s look at ASO trials happening right now in related polyglutamine diseases. In Huntington’s disease (HD), there are two programs that are currently in clinical trials. Regulatory authorities view ASOs as drugs and require that the product be shown to be both safe and effective in patients.

ASOs cannot be given as pills and they are currently injected into the spinal fluid. This is called intrathecal administration to get the drug directly in the fluid space where it can circulate back to the brain. Patients in phase 1 studies in HD are asked to have up to 7 injections and one phase 3 program requires injections every second month for 2 years. This involves a large commitment to the study and is asking a lot from patients and their families.

The only published phase 1 double-blind, placebo-controlled study in HD (Tabrizi et al., New England Journal of Medicine, 2019) has identified that a series of 4 injections were safe. They measured changes of the “bad” protein in the spinal fluid as a proof of concept that ASOs could lower protein levels. The good news was that they found that there was a dose-related reduction in this protein of about 40%. Patients from this study were offered “open label” monthly injections and this has shown a 60% reduction in the abnormal protein according to a recent presentation. Open label extensions are when patients can continue taking a drug after the formal time of the clinical trial is over.

medical doctor in blue scrubs and a white lab coat holding a stethoscope. They are off to one side, so only have their body can be seen, not inclduing their face.
What will ataxia clinical trials involving ASOs look like in the future? What will success look like?

So, what does success mean?

The phase 3 studies that are currently ongoing in HD are designed to see if there is a slowing of disease progression. This is being measured by assessing motor, cognitive and behavioral symptom change over time. Changes occur slowly in HD and SCA. Therefore, large numbers of patients are required over a relatively long study time.

The bottom line is that a successful study that shows slowing disease progression is likely to mean that the patients may not experience any obvious improvement while receiving the treatment and that they will continue to have progressive symptoms over time. Hopefully, this will be at a slower rate compared to the placebo group. Since there are no treatments available for SCA or HD, this will be welcome. It is by no means considered to be a cure or likely to stop the progression. True cures in medicine are rare, where a cure is defined as a drug ending disease.

Graphs of symptoms vs time. The "typical progression" line has more symptoms more quickly. The "delayed progression after potential treatment" line has fewer symptoms, but still increases over time.
Graph explaining how a potential ASO treatment might work in the future. Although it might not make symptoms go away completely, it could reduce how severe symptoms are, the number of symptoms, and/or delay when symptoms first appear. Illustration by Celeste Suart.

In the HD research community, we are asking questions that include:

  1. Is it a good idea to reduce the good protein that is part of our normal brain chemistry? In the current phase 3 study, the ASO reduces both the “good” and the “bad” HD protein. Another program in phase 1 uses an ASO that only reduces the “bad” protein.
  2. When is the best time to use ASO therapy? Since these conditions are associated with nerve cell damage and loss, it makes sense to use these types of therapy very early, even before damage occurs. This will mean that patients with moderate or advanced symptoms may not be good candidates for ASO therapy.
  3. Should we consider treatment in people who have had predictive genetic testing before symptoms start? This is being actively discussed but it is too early to consider this. We have to show that ASOs are safe and effective in symptomatic patients. We need to have good measures to determine if treatments are working. Regulatory authorities have required evidence that treatments have a positive effect on patients lives. This may be difficult to show in a short study. We must consider that it takes patients decades to get these diseases: slowing or stopping this could take just as long.

We can only figure out the answers to these questions in clinical trials. The goals of these trials are to improve people’s quality of life. To do this we need information from real people with these diseases, and not just models of disease. This is a process that will take time but will tell us which approach has the most promise and is worth pursuing faster. Thus, the patients and families at this point are just as important as the researchers in lab coats working together to treat these diseases.

If you would like to learn more about clinical trials, take a look at this resource by the FDA or our previous Snapshot on the subject.

Snapshot written by Dr. Mark Guttman and edited by Dr. Ray Truant.

Huntingtin: a new player in the DNA repair arsenal

Written by Dr. Ambika Tewari Edited by Dr. Mónica Bañez-Coronel

Mutations in the Huntingtin protein impair DNA repair causing significant DNA damage and altered gene expression

Our genome houses the entirety of our genetic material which contains the instructions for making the proteins that are essential for all processes in the body. Each cell within our body, from skin cells that provide a crucial protective barrier, immune cells that protect us from invading species and brain cells that allow us to perceive and communicate with the world contains genetic material. During early development in every mammalian species, there is a massive proliferation of cells that allows the development from a one-cell stage embryo to a functional body containing trillions of cells. For this process to occur efficiently and reliably, the instructions contained in our genetic material need to be precisely transmitted during cell division and its integrity maintained during the cell’s life-span to guarantee its proper functioning.

There are many obstacles that hamper the intricate and highly orchestrated sequence of events during development and aging, causing alterations that can lead to cell dysfunction and disease. Internal and external sources of DNA damage constantly bombard the genome. Examples of external sources include ultraviolet radiation and exposure to chemical agents, while internal sources include cell processes that can arise, for example, from the reactive byproducts of metabolism. Fortunately, nature has evolved a special group of proteins known as DNA damage and repair proteins that act as surveyors to detect erroneous messages. These specialized proteins ensure that damage to the DNA molecules that encode our genetic information is not passed to the new generation of cells during cell division or during the expression of our genes, ultimately protecting our genome. Many genetic disorders are caused by mutations in the genetic material. This leads to a dysfunctional RNA or protein with little or no function (loss of function) or an RNA or protein with an entirely new function (gain of function). Since DNA repair proteins play a crucial role in identifying and targeting mistakes made in the message, it stands to reason that impairment in the DNA repair process might lead to disease. In this study, Rui Gao and colleagues through an extensive collaboration sought to understand the connection between altered DNA repair and Huntington’s disease.

Blue strands of DNA
An artist’s rendering of DNA molecules.

Continue reading “Huntingtin: a new player in the DNA repair arsenal”