Written by Carrie Sheeler Edited by Dr. Hayley McLoughlin
Researchers use Magnetic Resonance Imaging (MRI) to determine if brain volume can be a biomarker for SCA3
There are two goals of preclinical research. First, to understand the cause of a disease. Second, to develop treatments to stop or slow its effects. As understanding of the underlying causes of spinocerebellar ataxias (SCAs) has grown, researchers have begun to develop strategies for treating or slowing the progression of this family of diseases. The next question is how to best move these potential therapies from the lab space to the clinic, which we do through clinical trials.
Clinical trials are essentially enormous multi-phase experiments run largely by drug companies. Clinical trials ask two main questions. First, is this drug/therapy safe? Then, how well does this drug/therapy work? Many potential therapies for neurodegenerative diseases have been unsuccessful in the past decade. These attempts have failed to demonstrate that they are effective in changing the progression of diseases, such as Alzheimer’s and Parkinson’s. There is concern that lack of drug effectiveness may come from starting treatment too late in the progression of the disease. Later in disease, irreversible damage may have already happened that is too much to fix. This is difficult to avoid in cases where the main measure of drug success (known as “primary endpoint”) is determined by clinical assessment in which a patient treated with a drug already has symptoms. An example of this in ataxia clinical trials is using the scale for assessment and rating of ataxia, also known as the SARA score.
To add more quantitative strength to clinical assessments that may also allow researchers to predict when symptoms will start to occur, scientists are seeking out new ataxia biomarkers. Examples of biomarkers include changes in brain volume or the concentration of certain proteins in blood. These studies may allow for a greater timeframe within which clinicians can combat disease progression

This paper examined if the volume of specific areas of the brain may be used as a biomarker for spinocerebellar ataxia type 3 (SCA3). To accomplish this aim, they assessed brain images from 210 symptomatic SCA3 individuals, 48 pre-ataxia SCA3 individuals, and 63 healthy controls. The designation of ataxia vs pre-ataxia was done using SARA score. Pre-ataxia individuals had a score of less than three, while symptomatic patients had a score greater than or equal to 3. The images were taken using magnetic resonance imaging (MRI). Images were taken of 122 distinct brain regions, covering the entirety of the brain and the upper regions of the spinal cord.
The average ages for all three groups were 46 for symptomatic individuals with SCA3, 38 for pre-ataxia individuals with SCA3, and 43 for controls. Notably, each patient received only one MRI. This means the comparisons made in this study rely on comparisons between individuals, rather than within the same individual over time. This is important because it means that the results listed below are a representation of changes in the brain across a population of SCA3 mutation carriers. This is not a representation of what is happening in one individual over time. But it is quite similar to what you might measure during a clinical trial.
Continue reading “Cerebellum, Pons, and Medulla- Oh my! Which brain regions can help us assess SCA3 progression?”
You must be logged in to post a comment.