Cerebellum, Pons, and Medulla- Oh my! Which brain regions can help us assess SCA3 progression?

Written by Carrie Sheeler Edited by Dr. Hayley McLoughlin

Researchers use Magnetic Resonance Imaging (MRI) to determine if brain volume can be a biomarker for SCA3

There are two goals of preclinical research. First, to understand the cause of a disease. Second, to develop treatments to stop or slow its effects. As understanding of the underlying causes of spinocerebellar ataxias (SCAs) has grown, researchers have begun to develop strategies for treating or slowing the progression of this family of diseases. The next question is how to best move these potential therapies from the lab space to the clinic, which we do through clinical trials.

Clinical trials are essentially enormous multi-phase experiments run largely by drug companies. Clinical trials ask two main questions. First, is this drug/therapy safe? Then, how well does this drug/therapy work? Many potential therapies for neurodegenerative diseases have been unsuccessful in the past decade. These attempts have failed to demonstrate that they are effective in changing the progression of diseases, such as Alzheimer’s and Parkinson’s. There is concern that lack of drug effectiveness may come from starting treatment too late in the progression of the disease. Later in disease, irreversible damage may have already happened that is too much to fix. This is difficult to avoid in cases where the main measure of drug success (known as “primary endpoint”) is determined by clinical assessment in which a patient treated with a drug already has symptoms. An example of this in ataxia clinical trials is using the scale for assessment and rating of ataxia, also known as the SARA score.

To add more quantitative strength to clinical assessments that may also allow researchers to predict when symptoms will start to occur, scientists are seeking out new ataxia biomarkers. Examples of biomarkers include changes in brain volume or the concentration of certain proteins in blood. These studies may allow for a greater timeframe within which clinicians can combat disease progression

Abstract blue brain
The volume of different brain regions could be used as biomarkers for SCA3 clinical trials. Photo used under license by Butusova Elena/Shutterstock.com.

This paper examined if the volume of specific areas of the brain may be used as a biomarker for spinocerebellar ataxia type 3 (SCA3). To accomplish this aim, they assessed brain images from 210 symptomatic SCA3 individuals, 48 pre-ataxia SCA3 individuals, and 63 healthy controls. The designation of ataxia vs pre-ataxia was done using SARA score. Pre-ataxia individuals had a score of less than three, while symptomatic patients had a score greater than or equal to 3. The images were taken using magnetic resonance imaging (MRI). Images were taken of 122 distinct brain regions, covering the entirety of the brain and the upper regions of the spinal cord.

The average ages for all three groups were 46 for symptomatic individuals with SCA3, 38 for pre-ataxia individuals with SCA3, and 43 for controls. Notably, each patient received only one MRI. This means the comparisons made in this study rely on comparisons between individuals, rather than within the same individual over time. This is important because it means that the results listed below are a representation of changes in the brain across a population of SCA3 mutation carriers. This is not a representation of what is happening in one individual over time. But it is quite similar to what you might measure during a clinical trial.

Continue reading “Cerebellum, Pons, and Medulla- Oh my! Which brain regions can help us assess SCA3 progression?”

Measuring neurodegeneration in spinocerebellar ataxias

Written by Dr Hannah K Shorrock Edited by Dr. Maria do Carmo Costa

Neurofilament light chain predicts cerebellar atrophy across multiple types of spinocerebellar ataxia

A team led by Alexandra Durr at the Paris Brain Institute identified that the levels of neurofilament light chain (NfL) protein are higher in SCA1, 2, 3, and 7 patients than in the general population. The researchers also discovered that the level of NfL can predict the clinical progression of ataxia and changes in cerebellar volume. Because of this, identifying patients’ NfL levels may help to provide clearer information on disease progression in an individualized manner. This in turn means that NfL levels may be useful in refining inclusion criteria for clinical trials.

The group enrolled a total of 62 SCA patients with 17 SCA1 patients, 13 SCA2 patients, 19 SCA3 patients, and 13 SCA7 patients alongside 19 age-matched healthy individuals (“controls”) as part of the BIOSCA study. Using an ultrasensitive single-molecule array, the group measured NfL levels from blood plasma that was collected after the participants fasted.

The researchers found that NfL levels were significantly higher in SCA expansion carriers than in control participants at the start of the study (baseline). In control individuals, the group identified a correlation between age and NfL level that was not present among SCA patients. This indicates that disease stage rather than age plays a larger role in NfL levels in SCAs.

Looking at each disease individually, the group was able to generate an optimal disease cut-off score to differentiate between control and SCA patients. By comparing the different SCAs, the research group found that SCA3 had the highest NfL levels among the SCAs studied. As such, SCA3 had the most accurate disease cut-off level with 100% sensitivity and 95% specificity of defining SCA3 patients based on NfL levels.

Artist's drawing of a group of Laboratory Scientist sturying a larger-than life human brain
A team from the Paris Brain Institute identify that SCA1, 2, 3, and 7 patients have higher levels of NfL protein than the general population. Photo used under license by ivector/Shutterstock.com.
Continue reading “Measuring neurodegeneration in spinocerebellar ataxias”

Snapshot: What is Cerebrospinal Fluid (CSF)?

Public transit may not be the first thing that comes to mind when we think about the brain, but it’s a great way to understand how all the parts of the central nervous system work together. Nutrients, hormones, and other important molecules (the passengers) need to get on and off at different stations to do their work. They might first stop at the large internal chambers within the brain, called ventricles. From the ventricles, they can get to the central canal in the spinal cord, as well as the subarachnoid space. The subarachnoid space is a space between two membranes that surround the brain and spinal cord. It provides a stable structure for a network of veins and arteries.

The passengers are shuttled from station to station by the cerebrospinal fluid (CSF), a clear, colourless fluid that provides the central nervous system with necessary nutrients and hormones while carrying away waste products. CSF also cushions the brain and spinal cord by circulating between layers of tissues surrounding them. The whole public transit system is enclosed: the subarachnoid space and the ventricles are connected to the central canal in the spinal cord, forming a single reservoir for CSF.

Cerebrospinal fluid written in colorful letters under a Stethoscope on wooden background
Photo used under license by Sohel Parvez Haque/Shutterstock.com.

CSF is made by the choroid plexus, a collection of tiny blood vessels called capillaries. Capillaries filter the blood and secrete it into the ventricles. When the pressure of CSF is less than the pressure in the capillaries, CSF flows out and into the ventricles. When the pressure of CSF is greater than that of the bloodstream, the extra fluid is absorbed from the subarachnoid space and into sinuses (large areas filled with blood), where it can flow into the surrounding veins. The blood supply in the central nervous system tightly regulates the movement of molecules or cells between the blood and brain. This blood-brain barrier is crucial for protecting the brain from toxins and pathogens. Dysfunction of this specific system contributes to the development of neurological diseases.

Anatomical labeled scheme with human head and inside of skull, including superior sigittal sinus, ventricles, arachnoid Villi and spinal cord central canal.
Structure of the ventricles and central canal components that contribute to the public transit system. Photo used under license by VectorMine/Shutterstock.com.

Why is CSF Important for Neurodegenerative Diseases?

In neurodegenerative diseases like Spinocerebellar Ataxias, CSF contains molecules that can be used as biomarkers. Biomarkers are disease-specific proteins that change in concentration depending on disease stages. Biomarkers provide information on disease progression, with or without the impact of therapeutics. They are also crucial for understanding how disease processes work and assist in developing treatments.

The development of intrathecal injections, injecting into the central canal for distribution to the central nervous system (for example, spinal anesthesia), has been monumental for administering drugs in neurodegenerative diseases. In other words, not only can the public transit system of the central nervous system be investigated to see what passengers are associated with the disease, but it can be used to deliver “medicine passengers” to the place where the disease occurs.

If you would like to learn more about Cerebrospinal Fluid, take a look at these resources by MedlinePlus and WebMD.

Snapshot written by Kaitlyn Neuman and edited by Dr. Tamara Maiuri.

Elongating expansions in HD and SCA1

Written by Dr. Marija Cvetanovic  Edited by Dr. Larissa Nitschke

Expanded CAG repeats are the cause of Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). Longer inherited CAG expansions correlate with the earlier disease onset and worse symptoms. We know from past research that these expansions are unstable and become longer from one generation to the next.

This study by Mouro Pinto and colleagues shows that repeat expansions also keep getting longer throughout life in patients affected with HD and SCA1 in many cells, including brain, muscle, and liver cells.

Expansion of CAG repeats in different human genes cause several neurodegenerative diseases. This includes Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). These long CAG repeats in disease genes tend to be unstable in the sperm and egg cells. This instability in sperm and egg cells can result in either longer repeat tracts (expansions) or shorter ones (contractions) in the children of affected patients. Unfortunately, CAG repeats more often expand than shrink. This results in a worse disease in the affected children, with earlier onset and more severe symptoms than their parents.

However, repeat instability and expansion of repeats are not confined to the sperm and egg cells. It can occur in many cells in a patient’s body. This ongoing expansion that occurs in other body cells is called somatic expansion.

Abstract background of DNA sequence
Long CAG repeats in disease genes can be unstable and expand. Photo used under license by Enzozo/Shutterstock.com.

As affected patients age, the ongoing somatic expansion, especially in the brain, may accelerate the onset of neuronal dysfunction and loss of neurons and. This may worsen the disease progression. This has been previously shown in mouse models and patients with HD. However, those studies examined expansion in only a few brain regions and tissues outside the brain (called peripheral tissues).

In this study lead by Dr. Vanessa C. Wheeler, the authors systematically examined repeat instability in 26 different regions of the brain, post-mortem cerebrospinal fluid (CSF) and nine peripheral tissues, including testis and ovaries from seven patients with HD and one patient with SCA1.

Continue reading “Elongating expansions in HD and SCA1”

Snapshot: What is Neurofilament light protein (NfL)?

Nerve cells (aka neurons) are unique cells in that they have long, and thin extensions called axons which form connections with and talk to other neurons. This particular shape of neurons determines how quickly they can get their messages to other cells. You can think of the axons in the brain like the wires connecting all the components of a dense electrical network.

NfL stands for Neurofilament light protein (Not to be confused with the national football league!). Neurofilaments are proteins found in our neurons. They are important for helping these cells hold their structure and size. We know this is important for their ability to send messages to other neurons. NfL is the smallest unit of three types of neurofilaments (light, medium and heavy). There is a lot of NfL found in the axons of neurons.

A large neuron with long interconected axons
A cortical neuron stained green with antibody to NfL. Image courtesy of GerryShaw on Wikimedia.

How do you measure NfL levels?

Like other proteins, NfL levels can be measured in fluids using tools known as immunoassays. These tools make use of antibodies generated by the immune systems to capture and count the protein of interest. It has been possible to measure NfL in cerebrospinal fluid (CSF) – the clear fluid that surrounds the brain and has lots of brain proteins – since 2005. In recent years, immunoassay technology has improved significantly, permitting the quantification of proteins previously too low in concentration to detect. One of these technologies is Single Molecule Array (Simoa) and has made it possible to measure NfL reliably in blood.

Why is NfL used as a biomarker?

Biomarkers are biological characteristics that can be measured and that tell us about a particular biological or disease process or response to a therapy. They can be used to make drug development more efficient. NfL is released into CSF after brain injury and also in many neurodegenerative diseases. This makes it a biomarker of neuronal injury. The problem with CSF is that it requires a safe but relatively invasive medical procedure called a lumbar puncture or spinal tap to collect. It would be a lot easier for both patients and doctors if we could get the same information from a blood test. Being able to quantify NfL – a brain protein – in blood, and more importantly, that it reflected what was happening in the brain was very exciting for many diseases.

In neurodegenerative diseases with effective disease modifying therapies (such as Multiple Sclerosis and Spinal Muscular Atrophy), a lowering of NfL reflects the clinical benefit in response to these therapies. In another genetic neurodegenerative disease caused by a CAG expansion, Huntington’s disease, NfL increase has been shown to be the earliest detectable change in asymptomatic gene carriers who are very far from their predicted age of disease onset. Many results like these suggest that NfL could help monitor disease even before symptoms appear, decide when to start therapies, and tell us if a drug is improving the health of neurons.

What NfL research is being done in ataxia research?

So what about ataxias? You will be pleased to know that Ataxia researchers have also jumped on the NfL band wagon. We previously wrote an article on two independently published studies in SCA3 which showed in many patients that NfL levels increased as Ataxia severity got worse, they were correlated with a measure of clinical severity (SARA) and increased with the level of brain loss (atrophy). One of the studies showed NfL levels increased with a higher number of CAG repeats in someone’s SCA3 mutation. There is also work using mouse models of SCA3 to understand this biomarker further. Two studies have now shown that NfL is also increased in Friedreich’s ataxia. With more research, NfL could potentially be used to design better clinical trials for ataxias and to monitor disease.

If you would like to learn more about NfL, take a look at this article by NeurologyLive.

Snapshot written by Dr. Lauren Byrne and edited by Dr. Gülin Öz.