Stressed to the limit: Uncovering a role for oxidative stress in spinocerebellar ataxia type 7

Written by Siddharth Nath Edited by Dr. Ray Truant

Oxidative stress is a hot topic in neurodegenerative disease research. New findings from Dr. Jonathan Magaña’s lab in Mexico show increases in measures of damage from oxygen compounds in SCA7 patients versus healthy individuals. This suggests that this type of chemical stress may be a critical step in triggering the death of brain cells in SCA7.

You’re stressed – whether you like it or not

You may not realize it, but all of the cells in your body are, at some point or another, undergoing stress. Now, this isn’t the same as what we normally take the word “stress” to mean. Your cells aren’t cramming for an exam, nor are they worried about an upcoming job interview. Instead, stress at the cellular level refers to the challenges cells face in the form of environmental extremes (like temperature changes), mechanical damage, exposure to toxins, and dysregulation of stress responses.

A particularly nasty type of stress that cells must contend with is oxidative stress. This results from an imbalance in the levels of reactive oxygen species (hence the term ‘oxidative’) within a cell and the cell’s ability to clear away these species. Reactive oxygen species form inside of cells as a byproduct of normal metabolism, and every cell has mechanisms to help with their clearance. These mechanisms, however, can become impaired. This could end up being disastrous because, when not removed properly, reactive oxygen species can wreak havoc in the cell: they have the ability to directly damage every cellular component, including proteins, lipids, and DNA.

red pencil writing the word stress
Photo by Pedro Figueras on Pexels.com

Interestingly, oxidative stress increases naturally as we age and is a normal part of growing older. Oxidative stress is a topic of intense study and has been implicated in everything from cancer and bone disease to other neurodegenerative disorders (such as Alzheimer’s disease and Huntington’s disease). An inability to cope with or respond to increases in oxidative stress associated with aging may explain why many neurodegenerative disorders occur later in life, despite the fact that affected individuals express the disease gene from birth.

Continue reading “Stressed to the limit: Uncovering a role for oxidative stress in spinocerebellar ataxia type 7”

RNA-binding Protein Found to Play a Role in SCA2 Neurodegeneration

Written by Dr. Hayley McLoughlin Edited by Dr. Gülin Öz

Is Staufen1 a kink in the SCA2 toxicity chain that can be exploited?

When a cell is stressed, it can initiate a mechanism to protect messenger RNAs (mRNAs) from harmful conditions.  It does this by segregating the mRNAs, then packaging them up in droplets known as RNA stress granules. ATXN2, the protein that is mutated in SCA2, has previously been reported as a key component in the formation of these RNA stress granules (Nonhoff et al., 2007).  This observation has led researchers to take a closer look at stress granule components, especially in the context of SCA2 disease tissues.

close of of chain with metal links
Image of a metal chain. If a “weak link” is found in the chain of events that go amiss in SCA2, scientists could focus on this area to research possible treatment.  Photo by Pixabay on Pexels.com

Continue reading “RNA-binding Protein Found to Play a Role in SCA2 Neurodegeneration”

Molecular Mechanism behind Purkinje Cell Toxicity in SCA1 Uncovered

Written by Dr. Chandrakanth Edamakanti   Edited by Dr. Hayley McLoughlin

Recent study decodes the protein signature of toxic Purkinje cells, finding that Purkinje cell mTORC1 signaling is impaired in SCA1.

Spinocerebellar ataxia type 1 (SCA1) is a late onset cerebellar neurodegenerative disorder caused by a mutation (in this case, an abnormal polyglutamine stretch) in the Ataxin-1 gene. People with this condition experience problems with coordination and balance, a set of symptoms known as ataxia. The protein produced by this faulty gene, ATXN1, is particularly toxic to the Purkinje cells, the sole output neurons of the cerebellum. However, the reason behind the selective toxicity of Purkinje cells in SCA1 is unknown.

The main focus of this article is to address this question. It is the first study to find the protein signature of toxic Purkinje cells in SCA1 mice. In the end, the authors identified widespread protein changes that are associated with Purkinje cell toxicity.

science laboratory
Image of scientific laboratory. Photo by Martin Lopez on Pexels.com

Continue reading “Molecular Mechanism behind Purkinje Cell Toxicity in SCA1 Uncovered”

The Discovery of SCA8

Written by Dr. Hannah K Shorrock Edited by Dr. Judit M Perez Ortiz

How one team uncovered the first SCA known to be caused by a CTG repeat expansion mutation

Identifying the gene that causes a type of ataxia not only gives patients and their families a clearer diagnosis and prognosis, but also allows scientists to model the disease. Through genetic animal models of ataxia, researchers can study how a single mutation causes a disease and how we can try to slow, halt, or even reverse this process. It is this path through research that may eventually lead from gene discovery to the development of effective therapies.

The gene that causes spinocerebellar ataxia type 8 (SCA8) was first described in a research article published in 1999. Since then, many research articles on SCA8 have been published, including research into the DNA repeat expansions that cause the ataxia, the cellular processes that lead to ataxia, and the development of multiple animal models of SCA8. Together, these move the scientific community further along the road of research.

mother with her two children looking at a mountain
Image of mother with her children. SCA8 was initially identified in a mother and daughter. SCA8 also shows maternal penetrance bias. Photo by Josh Willink on Pexels.com

Continue reading “The Discovery of SCA8”

Welcome to SCAsource!

About six months ago, scientists from all over the world converged on the 2018 Ataxia Investigators Meeting. Colleagues and students discussed the latest advancements in ataxia research. Researchers were able to connect with patients and families, letting them know what progress was being made.

Some of the discussion between trainees at this meeting highlighted how great it was to be able to speak with patients and let them know what was happening in the lab. It was unfortunate that this opportunity only happened every two years.

It was at this meeting where the idea for SCAsource was born: a website where scientific articles on SCAs and related ataxias would be translated into plain language that anyone would be able to understand.

Road stretching out into the distance
The journey begins. Photo by Nextvoyage on Pexels.com

Continue reading “Welcome to SCAsource!”