Snapshot: O que é terapia genética?

Terapia genética significa utilizar ácidos nucleicos para tratar uma desordem genética. Esses ácidos nucleicos podem ser desenhados em uma variedade de formas para alcançar um mesmo propósito terapêutico. Ferramentas de terapia genética podem ser utilizadas para corrigir um gene mutante através de uma das três formas:

  1. Expressão de uma cópia saudável do gene
  2. Silenciamento ou ativação do transcrito de um gene mutante
  3. Utilização de ferramentas de edição genética para reparar ou desligar o gene mutado.
computer desk laptop stethoscope
Foto de um estetoscópio, por Negative Space no Pexels.com

Como a terapia genética é utilizada?

Doenças monogênicas, como algumas ataxias espinocerebelares (SCAs) são alvos excelentes para abordagens de terapia genética. Terapias genéticas são atualmente utilizadas em pesquisas em ataxia para estudar os mecanismos das doenças e para a aplicação terapêutica em ensaios pré-clínicos.

Terapia genética. 1. Um gene saudável, RNA de interferência ou ferramentas de edição gênica são “empacotados” em vírus adeno-associados (mas também podem ser entregues à célula somente como molécula de DNA ou em nanopartícula). 2. As partículas virais são injetadas no tecido de interesse. 3. O virus entra nas células e libera o material genético. A célula então se tornará saudável por uma das seguintes vias: 1) expressão do gene normal; 2) repressão do RNA mutante, ou 3) correção do gene mutante.
Visão geral da terapia genética, desenvolvida pela Stephanie Coffin com uso do Biorender.

Uma abordagem de terapia genética para resgatar o fenótipo em SCA1 envolve a expressão do gene saudável, ataxina-1-like, que compete com a proteína ATXN1 mutante pela formação de complexos proteicos. Esse trabalho, conduzido por Keiser e colaboradores em 2016, mostrou o resgate fenotípico em um modelo de camundongo de SCA1.

Existem duas tecnologias comuns utilizadas para o silenciamento ou inativação de genes relacionados a doenças: RNA de interferência (RNAi) ou oligonucleotídeos antisenso (ASOs). As estratégias de RNAi utilizam pequenas moléculas de RNA para silenciar a expressão de transcritos-alvo de RNA mutante, enquanto os ASOs são moléculas de DNA usadas para silenciar ou corrigir transcritos de RNA mutante. Ambas as abordagens terapêuticas estão sendo testadas em SCAs. Por exemplo, Carmo e colaboradores mostraram em 2013  que a utilização de RNAi tendo como alvo o gene que causa SCA3, ATXN3, reduziu longitudinalmente os níveis de ATXN3 mutante. Veja o SCAsource snapshot sobre ASOs para maiores informações sobre seu uso em SCAs.

A ferramenta mais comum de edição genética é o sistema CRISPR/Cas9, que utiliza um guia de RNA para direcionar a enzima nuclease Cas9 para a região do genoma a ser editada. Desse modo, o gene mutante pode ser removido ou corrigido. Ainda é cedo para essa tecnologia ser considerada como potencial terapêutico, devido aos desafios enfrentados para a inserção do sistema na célula e os riscos de edição de genes não-alvos.

Como a terapia genética é entregue à célula?

Um dos aspectos mais difíceis da terapia genética é a inserção das diversas moléculas necessárias nas células de interesse. Um método comum é através da utilização de vírus. Nesse método, o ácido nucleico é transferido para as células doentes através de um vetor, que é um vírus que foi modificado para a retirada dos componentes virais. Os vetores virais mais comuns atualmente utilizados na terapia genética são os vírus adeno-associados (AAVs). Outros métodos de inserção incluem vetores não-virais, como moléculas de DNA e nanopartículas.

Qual a durabilidade da terapia genética?

A inserção dos produtos da terapia genética por meios virais promove uma expressão longitudinal do ácido nucleico, enquanto a inserção direta da molécula de DNA ou nanopartículas resulta em uma expressão transiente do ácido nucleico e, portanto, tipicamente requer um tratamento contínuo.

Gostaria de aprender mais sobre terapia genética? Dê uma olhada no conteúdo (em inglês) dos sites do National Institutes of Health e KidsHealth.

Snapshot escrito por Stephanie Coffin e editado por Dr.Hayley McLoughlin. Inicialmente publicado em 23 de agosto de 2019. Traduzido para o português por Priscila P. Sena.

Snapshot: What is Cerebrospinal Fluid (CSF)?

Public transit may not be the first thing that comes to mind when we think about the brain, but it’s a great way to understand how all the parts of the central nervous system work together. Nutrients, hormones, and other important molecules (the passengers) need to get on and off at different stations to do their work. They might first stop at the large internal chambers within the brain, called ventricles. From the ventricles, they can get to the central canal in the spinal cord, as well as the subarachnoid space. The subarachnoid space is a space between two membranes that surround the brain and spinal cord. It provides a stable structure for a network of veins and arteries.

The passengers are shuttled from station to station by the cerebrospinal fluid (CSF), a clear, colourless fluid that provides the central nervous system with necessary nutrients and hormones while carrying away waste products. CSF also cushions the brain and spinal cord by circulating between layers of tissues surrounding them. The whole public transit system is enclosed: the subarachnoid space and the ventricles are connected to the central canal in the spinal cord, forming a single reservoir for CSF.

Cerebrospinal fluid written in colorful letters under a Stethoscope on wooden background
Photo used under license by Sohel Parvez Haque/Shutterstock.com.

CSF is made by the choroid plexus, a collection of tiny blood vessels called capillaries. Capillaries filter the blood and secrete it into the ventricles. When the pressure of CSF is less than the pressure in the capillaries, CSF flows out and into the ventricles. When the pressure of CSF is greater than that of the bloodstream, the extra fluid is absorbed from the subarachnoid space and into sinuses (large areas filled with blood), where it can flow into the surrounding veins. The blood supply in the central nervous system tightly regulates the movement of molecules or cells between the blood and brain. This blood-brain barrier is crucial for protecting the brain from toxins and pathogens. Dysfunction of this specific system contributes to the development of neurological diseases.

Anatomical labeled scheme with human head and inside of skull, including superior sigittal sinus, ventricles, arachnoid Villi and spinal cord central canal.
Structure of the ventricles and central canal components that contribute to the public transit system. Photo used under license by VectorMine/Shutterstock.com.

Why is CSF Important for Neurodegenerative Diseases?

In neurodegenerative diseases like Spinocerebellar Ataxias, CSF contains molecules that can be used as biomarkers. Biomarkers are disease-specific proteins that change in concentration depending on disease stages. Biomarkers provide information on disease progression, with or without the impact of therapeutics. They are also crucial for understanding how disease processes work and assist in developing treatments.

The development of intrathecal injections, injecting into the central canal for distribution to the central nervous system (for example, spinal anesthesia), has been monumental for administering drugs in neurodegenerative diseases. In other words, not only can the public transit system of the central nervous system be investigated to see what passengers are associated with the disease, but it can be used to deliver “medicine passengers” to the place where the disease occurs.

If you would like to learn more about Cerebrospinal Fluid, take a look at these resources by MedlinePlus and WebMD.

Snapshot written by Kaitlyn Neuman and edited by Dr. Tamara Maiuri.

El tratamiento para la SCA1 no causa efectos secundarios no deseados en un modelo de ratón

Escrito por el Dr. Ronald Buijsen Editado por la Dra. Larissa Nitschke. Publicado inicialmente en el 28 de Enero de 2021. Traducción al español fueron hechas por FEDAES y Carlos Barba.

O’Callaghan y sus colegas muestran que los enfoques terapéuticos novedosos para reducir la proteína que causa la enfermedad en SCA1 no aumentan el riesgo de desarrollar cáncer o enfermedad de Alzheimer en ratones SCA1.

Las personas afectadas con ataxia espinocerebelosa tipo 1 o SCA1 llevan una expansión de un tramo repetitiva de ADN en el ATXN1 gen. La expandido ATXN1 gen codifica una proteína expandido ataxina-1, que se acumula y causa toxicidad en el cerebro. Esto provoca problemas de coordinación motora y letalidad prematura. Hasta ahora, no existe ningún tratamiento que ralentice, detenga o revierta la progresión de la enfermedad SCA1.

Aún así, varios estudios preclínicos demostraron que la reducción de los niveles de proteína ataxina-1 puede mejorar los déficits de coordinación motora en modelos de ratón SCA1. Una estrategia para reducir los niveles de ataxina-1 es el uso de oligonucleótidos antisentido (ASO) . Estos tratamientos de ASO escinden específicamente el ARNm de Atxn1 y reducen los niveles de proteína ataxina-1.

Este estudio, publicado por el grupo del Dr. Harry Orr en 2018 , mostró que la inyección de ASO en el cerebro de ratones SCA1 mejora los déficits motores, prolonga la supervivencia y revierte las anomalías neuroquímicas. Sin embargo, la reducción de los niveles de la proteína ataxina-1 podría provocar una expresión alterada de otras proteínas en el cerebro. Esto podría afectar la seguridad de esta estrategia de tratamiento. Por lo tanto, este estudio de seguimiento investigó si la reducción de los niveles de proteína ataxina-1 produce efectos no deseados.

a brown laboratory mouse sits in a researcher's gloved hand
El tratamiento con ASO para reducir los niveles de ataxina-1 no causa efectos secundarios no deseados en un modelo de ratón SCA1. La Imagen fue obtenida de Rama de Wikimedia.
Continue reading “El tratamiento para la SCA1 no causa efectos secundarios no deseados en un modelo de ratón”

ASO treatment to lower ataxin-1 levels doesn’t cause unwanted side effects in a SCA1 mouse model

Written by Dr. Ronald Buijsen Edited by Dr. Larissa Nitschke

O’Callaghan and colleagues show that novel therapeutic approaches to reduce the disease-causing protein in SCA1 do not increase the risk of developing cancer or Alzheimer’s disease in SCA1 mice.

People affected with Spinocerebellar Ataxia type 1 or SCA1 carry an expansion of a repetitive stretch of DNA in the ATXN1 gene. The expanded ATXN1 gene encodes an expanded ataxin-1 protein, which accumulates and causes toxicity in the brain. This causes motor coordination problems and premature lethality. So far, there is no treatment that slows, stops, or reverses SCA1 disease progression.

Still, several preclinical studies demonstrated that reducing ataxin-1 protein levels can improve the motor coordination deficits in SCA1 mouse models. One strategy to reduce ataxin-1 levels is the use of antisense oligonucleotides (ASO). These ASO treatments specifically cleave Atxn1 mRNA and lower ataxin-1 protein levels.

This study, published by the group of Dr. Harry Orr in 2018, showed that injection of ASOs into the brain of SCA1 mice improves motor deficits, prolonged survival, and reversed neurochemical abnormalities. However, lowering ataxin-1 protein levels might lead to altered expression of other proteins in the brain. This could impact the safety of this treatment strategy. Therefore, this follow-up study investigated whether lowering of ataxin-1 protein levels results in unwanted effects.

a brown laboratory mouse sits in a researcher's gloved hand
ASO research in SCA1 is promising. But before moving forward, more safety testing had to be done in SCA1 mouse models. Image courtesy of Rama on Wikimedia.
Continue reading “ASO treatment to lower ataxin-1 levels doesn’t cause unwanted side effects in a SCA1 mouse model”

2 minuti di Scienza: Cosa sono I nucleotidi antisenso?

I nucleotidi anti-senso (anche noti come ASOs o AON, dall’inglese Antisense oligonucleotides) sono piccole molecole che possono essere usate per prevenire o alterare la produzione di proteine. Le proteine sono la forza lavoro della cellula, e dirigono la maggior parte dei processi cellulari. Le proteine sono prodotte in due fasi: nella prima un gene che codifica per una proteina viene convertito in una molecola che contiene specifiche istruzioni, l’RNA messaggero (mRNA). L’ mRNA trasferisce l’informazione contenuta nei geni al compartimento che assembla le proteine. Qui, l’mRNA è infine trasformato in proteina. Gli ASOs sono corte sequenze di DNA a singolo filamento, complementari alla sequenza di uno specifico mRNA. In base a diversi tipi di modifiche chimiche della loro sequenza, gli ASOs possono determinare due tipi di effetti sull’ mRNA complementare. Alcune modifiche fanno si che gli ASO distruggano l’mRNA e, di conseguenza, causano la perdita della proteina corrispondente. Altre modifiche, invece, permettono agli ASO di mascherare certi tratti dell’mRNA bersaglio, causando la produzione di una versione alterata della proteina.

Come funzionano gli ASO nel corpo umano. Autore della figura Larissa Nitschke, creato con BioRender.

La maggior parte delle Atassie spinocerebellari (dall’inglese Spinocerebellar Ataxias, SCAs) sono causate dall’accumulazione di una proteina tossica in una specifica regione del cervello. Per questo motivo, il principale obiettivo del trattamento delle SCAs con gli ASOs è inibire la produzione della proteina tossica. Un esempio di questa applicazione degli ASO è il lavoro del Prof. Harry Orr all’ Università del Minnesota. Il suo gruppo di ricerca studia l’Atassia spinocerebellare di tipo 1 (SCA1), causata dall’accumulo tossico della proteina Ataxina-1. Iniezioni di ASOs in modelli animali di SCA1 riducono i livelli di Ataxina-1 e migliorano l’incoordinazione motoria tipica della SCA1. Un altro modo di usare gli ASOs per il trattamento delle SCAs è la modifica dell’informazione trasmessa dall’mRNA per produrre una versione alterata della proteina. Questo approccio è stato testato nel caso della Atassia spinocerebellare di tipo 3 (SCA3), nella quale un’espansione nel gene Atxn3 rende la proteina Ataxina 3 tossica. Il gruppo del Dr. van Roon-Mom, in Olanda, per esempio, ha usato gli ASOs per rimuovere esclusivamente la porzione espansa della proteina Atxn3, lasciando intatta il resto della struttura proteica e la sua funzione.

Entrambi gli studi, così come altri studi portati avanti per altre SCAs, hanno evidenziato il potenziale uso degli ASOs come strumenti terapeutici per le SCAs. Mentre la ricerca sugli ASOs per le SCAs è per lo più nella fase preclinica, il trattamento con gli ASO per altre malattie, come la Distrofia Muscolare di Duchenne e l’atrofia muscolare spinale, è stato già approvato dall’ente statunitense Food and Drug Administration. Ulteriori studi clinici saranno necessari per misurare il beneficio terapeutico degli ASOs in pazienti di SCAs.

Per saperne di più sugli oligonucleotidi antisenso, leggi questo articolo alla pagina  HDBuzz sugli ASOs in via di sviluppo per la malattia di Huntington.

“2 minuti di Scienza” scritto da Dr. Larissa Nitschke, revisionato da Dr. Hayley McLoughli, tradotto in italiano da Dr. Antonia De Maio. Pubblicato per la prima volta il 31 Maggio 2019.