Spotlight: The CMRR Ataxia Imaging Team

Location: University of Minnesota, MN, USA

Year Research Group Founded:  2008

What models and techniques do you use?

A photo of the CMRR Ataxia Imaging Team
A photo of the CMRR Ataxia Imaging Team in 2019. Front row, left to right – Diane Hutter, Christophe Lenglet (PI), Gulin Oz (PI), Katie Gundry, Jayashree Chandrasekaran Back row, left to right: Brian Hanna, James Joers, Pramod Pisharady, Kathryn France, Pierre-Gilles Henry (PI), Dinesh Deelchand, Young Woo Park, Isaac Adanyeguh (insert)

Research Group Focus

What shared research questions is your group investigating?

We use high field, multi-nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) to explore how diseases impact the central nervous system. These changes can be structural, functional, biochemical and metabolic alterations. For example, we apply advanced MRI and MRS methods in neurodegenerative diseases and diabetes.

We also lead efforts in research taking place at multiple different cities across the United States and the world. As you can imagine, studies spread out across such a big area require a lot of coordination and standardization. We design robust MRI and MRS methods to be used in clinical settings like these.

Another important question for our team is how early microstructural, chemical and functional changes can be detected in the brain and spinal cord by these advanced MR methods. We are interested in looking at these changes across all stages of disease.

Why does your group do this research?

The methods we use (MRI and MRS) can provide very helpful information to be used in clinical trials. These biomarkers we look at can provide quantitative information about how a disease is progressing or changing.

There is good evidence that subtle changes in the brain can be detected by these advanced MR technologies even before patients start having symptoms. If we better understand the earliest changes that are happening in the brain, this can in turn enable interventions at a very early stage. For example, we could treat people even before brain degeneration starts to take place.

Why did you form a research group connecting multiple labs?

We came together to form the CMRR Ataxia Imaging Team to benefit from our shared and complementary expertise, experience, and personnel. We can do more together than we could apart.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for multiple different studies. You can learn more about the research we are recruiting for at the following links: READISCA,  TRACK-FA, NAF Studies, and FARA Studies. More information is also available through the UMN Ataxia Center.

A photo of the CMRR Ataxia Imaging Team in 2016
A photo of the CMRR Ataxia Imaging Team in 2016, in front of the historic 4T scanner where the first functional MR images were obtained, in CMRR courtyard. Left to right – Christophe Lenglet (PI), Sarah Larson, Gulin Oz (PI), Dinesh Deelchand, Pierre-Gilles Henry (PI), James Joers, Diane Hutter

What Labs Make Up the CMRR Ataxia Imaging Team?

The Oz Lab

Principal Investigator:  Dr. Gulin Oz

Year Founded:  2006

Our focus is on MR spectroscopy, specifically neurochemistry and metabolism studies. We focus on spinocerebellar ataxias. Also, we have been leading MRS technology harmonization across different sites and vendors.

The Henry Lab

Principal Investigator: Dr. Pierre-Gilles Henry

Year Founded:  2006

We develop advanced methods for MR spectroscopy and motion correction. Then apply these new methods to the study of biochemistry and metabolism in the brain and spinal cord in various diseases. We have been working on ataxias since 2014.

Fun Fact about the Henry Lab: The French language can often be heard in discussions in our lab!

The Lenglet Lab

Principal Investigator:  Dr. Christophe Lenglet

Year Founded:  2011

We develop mathematical and computational strategies for human brain and spinal cord connectivity mapping. We do this using high field MRI. Our research aims at better understanding the central nervous system anatomical and functional connectivity. We are especially interested in looking at this in the context of neurological and neurodegenerative diseases.

Fun Fact

Members of our team have their roots in 7 countries (US, Turkey, France, India, Mauritius, South Korea, Ghana) and 4 continents (North America, Europe, Asia, Africa)

For More Information, check out the Center for Magnetic Resonance Research (CMRR) Website!


Written by Dr. Gulin Oz, Dr. Pierre-Gilles Henry, and Dr. Christophe Lenglet, Edited by Celeste Suart

Spotlight: The Kuo Lab

Principal Investigator: Dr. Sheng-Han Kuo

Location: Columbia University, New York, NY, United States

Year Founded:  2012

What disease areas do you research?

What models and techniques do you use?

Kuo Lab group photo.
This is a group picture of the Kuo Lab. From the left to right: Nadia Amokrane, Chi-Ying (Roy) Lin, Sara Radmard, Sheng-Han Kuo (PI), Chih-Chun (Charles) Lin, Odane Liu, Chun-Lun Ni , Meng-Ling Chen, Natasha Desai, David Ruff.

Research Focus

What is your research about?

We study how mishaps and damage in the cerebellum lead to the symptoms experienced by ataxia and tremor patients. By looking at human brains, as well as brains from mouse models, we study how different changes in brain structure can lead to symptoms. This includes how well different parts of the brain can communicate with each other.

Why do you do this research?

When you ask patients about the challenges living with ataxia or tremor, they will talk to you about their symptoms. Symptoms can make different activities of daily living very challenging! By connecting specific brain changes to specific symptoms, we want to develop treatment options that target specific diseases. By doing this, we hope to improve patient’s quality of life. 

Initiative for Columbia Ataxia and Tremor Logo. It is a circle containing a lion with its whiskers to look like a neuron

The Kuo lab is part of the Initiative for Columbia Ataxia and Tremor. It’s a new Initiative at Columbia University to bring a group of physicians, scientists, surgeons, and engineers to advance the knowledge of the cerebellum and to develop effective therapies for ataxia and tremor.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for clinical research and trials. You can learn more about the studies we are currently recruiting for at this link.

Fun Fact

In the Kuo Lab, we call ourselves “the Protector of the Cerebellum in New York City”.

For More Information, check out the Kuo Lab Website!

We are looking for new graduate students and postdoctoral researchers to join our team. If you are interested in our work, please reach out to us


Written by Dr. Sheng-Han Kuo, Edited by Celeste Suart

Spotlight: The Zoghbi Lab

Baylor College of Medicine

Principal Investigator: Dr. Huda Zoghbi

Location: Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA

Year Founded:  1988

Logo: Texas Children's Hospital. Jan and Dan Duncan Neurological Research Institute

What models and techniques do you use?

Research Focus

What is your research about?

Our laboratory uses multiple methods to explore the underlying causes of different neurodegenerative and neurodevelopmental disorders. Some diseases we study affect children, like Rett Syndrome. Others affect adults, like spinocerebellar ataxia type 1 (SCA1), Alzheimer’s disease (AD) and Parkinson’s disease (PD). We also research how healthy brains grow and develop.

We first seek to understand the mechanism by which a mutant protein causes disease, allowing us to more thoughtfully and effectively develop therapeutic options for the diseases we study. Our work in SCA1 demonstrated that lowering levels of the disease-driving protein is beneficial in the course of disease, informing our approach to the study of other diseases of the brain.  

Why do you do this research?

We do this research to help the patients, families and caregivers affected by the diseases we study. Most of the disorders we study currently have no or very few treatment options available, and we hope to help in changing that.

Our lab began with Dr. Zoghbi seeing patients in the clinic who were diagnosed with Rett Syndrome and SCA1. Work with these patients allowed for the discovery of the genes causing these diseases. Today, we hope to aid in understanding how these diseases work and to develop therapies that can then be brought back to the clinic for patients. Furthermore, we hope our findings and the tools we’ve developed will aid in the study of other neurodevelopmental and neurodegenerative disorders.

A group picture of the Zoghbi Lab
Zoghbi Lab members at Hermann Park in Houston, TX in 2021. Bottom row L-R: Y. Sun, W. Wang, W. Lee, M. Zaghlula, H. Lee, S. Coffin, S. Wu, J. Butts, C. Adamski, H. Zoghbi (PI), Y. Shao, J. Johnson, J. Zhou, A. Tewari, H. Palikarana Tirumala, J. Lopez, Top row L-R: A. Anderson, E. Xhako, E. Villavicencio, Y. Li, S. Bajikar, M. Durham.

Fun Fact

On April 8, 1993, both Dr. Huda Zoghbi and Dr. Harry Orr identified the gene, ATXN1, which when mutated, is responsible for causing SCA1. You can read about this discovery here.

For More Information, check out the Zoghbi Lab website!


Written by Stephanie Coffin, Edited by Celeste Suart

Spotlight: The Movement Analysis and Robotics Laboratory (MARlab)

MAR lab logo

Principal Investigator: Dr. Maurizio Petrarca

Location: Bambino Gesù Children Hospital, Rome, Italy

Year Founded: 2000

What models and techniques do you use?

  • Wearable Technologies
  • Movement analysis
  • Robotics
  • Clinical standardized assessment tools
Seven researchers stand infrom of a presentation screen
This is group picture taken during a conference. From left to right: Silvia Minosse, Alberto Romano, Martina Favetta, Maurizio Petrarca (PI), Gessica Vasco, Susanna Summa and Riccardo Carbonetti. Image courtesy of Susanna Summa.

Research Focus

What is your research about?

MARlab has a lot of experience in the rehabilitation of children with motor disorders including cerebellar diseases. We specialize in the use of motion analysis systems and robotics. Using advanced tools, we customize assessments and rehabilitative settings matching children needs in an ecological context.

We are involved in research to define specific digital biomarker and we are exploring different technological solutions, including wearable technology, to monitor the patient at home.

Rehabilitative competencies assure clinical opportunity in developing technological tools for training and assessment of the postural control, upper-limb coordination, gait, speech and cognition in pathological conditions.

Why do you do this research?

Ataxias are rare and chronic diseases usually without cure. The progression of the disease needs to be monitored periodically, so patients visit the hospital to control their condition by performing several clinical protocols. Developing more accurate and precise technology, to measure symptoms remotely, will help us better measure the impact of different treatments and rehabilitation in ecological contexts, decreasing the patient’s stress. This will help researchers and doctors knowing what works best for the patient. 

Bambino Gesù Children Hospital Logo

The Movement Analysis and Robotics Laboratory (MARlab) is located in the Bambino Gesù Children Hospital in Rome, Italy.

Fun Fact

We are a pediatric hospital very close to sea and our walls are painted with underwater landscapes.

A hospital walkway with the walls painted with sea creatures and submarines

For More Information, check out the Bambino Gesù Children Hospital website!


Written by Dr. Susanna Summa, Edited by Celeste Suart

Spotlight: The Neuro-D lab Leiden

Principal Investigator: Dr. Willeke van Roon-Mom

Location: Leiden University Medical Centre, Leiden, The Netherlands

Year Founded: 1995

What disease areas do you research?

What models and techniques do you use?

A group photo of members of the Neuro-D lab Leiden standing outside on a patio.
This is a group picture taken during our brainstorm day last June. From left to right: Boyd Kenkhuis, Elena Daoutsali, Tom Metz, Ronald Buijsen, Willeke van Roon-Mom (PI), David Parfitt, Hannah Bakels, Barry Pepers, Linda van der Graaf and Elsa Kuijper. Image courtesy of Ronald Buijsen.

Research Focus

What is your research about?

The Neuro-D research group studies how diseases develop and progress at the molecular level in several neurodegenerative diseases. They focus on diseases that have protein aggregation, where the disease proteins clump up into bundles in the brain and don’t work correctly.

We focus strongly on translational research, meaning we try to bridge the gap between research happening in the laboratory to what is happening in medical clinics. To do this we use more “traditional” research models like animal and cell models. But we also use donated patient tissues and induced pluripotent stem cell (iPSC) models, which is closer to what is seen in medical clinics.

Our aim is to unravel what is going wrong in these diseases, then discover and test potential novel drug targets and therapies.

One thing we are doing to work towards this goal is identifying biomarkers to measure how diseases progress over time. To do this, we use sequencing technology and other techniques to look at new and past data from patients.

Why do you do this research?

So far there are no therapies to stop the progression of ataxia. If we can understand what is happening in diseases in individual cells, we can develop therapies that can halt or maybe even reverse disease progression.

Identifying biomarkers is also important, because it will help us figure out the best time to treat patients when we eventually have a therapy to test.

Stylized logo for the Dutch Center for RNA Therapeutics
The Neuro-D lab Leiden is part of the Dutch Center for RNA Therapeutics, which focuses on RNA therapies like antisense oligonucleotides. Logo designed by Justus Kuijer (VormMorgen), as 29 year old patient with Duchenne muscular dystrophy.

Are you recruiting human participants for research?

Yes, we are! We are looking for participants for a SCA1 natural history study and biomarker study. More information can be found here. Please note that information about this study is only available in Dutch.

Fun Fact

All our fridges and freezers have funny names like walrus, seal, snow grouse and snowflake.

For More Information, check out the Neuro-D lab Leiden website!


Written by Dr. Ronald Buijsen, Edited by Celeste Suart