Snapshot: What is Nystagmus?

Nystagmus, also known as ocular ataxia, is a term that refers to uncontrollable eye movement- usually a repetitive cycle of slow movement in a specific direction followed by a quick adjustment back to center. The root of this movement lies in a normal reflex that we use every day: the vestibulo-ocular reflex. This reflex controls how our sense of balance and head movement (our ‘vestibular’ sense) directs the movement of our eyes (the ‘ocular’ component refers to the eye muscles).

For example, if we look at something like the space bar on our keyboard and move our head slowly back and forth, our eyes are usually able to remain fixed on the space bar without much conscious effort. This is occurring because of constant communication between our inner ear and our eye muscles as our head is moving in space.

To get slightly more technical about how this works, we have special sensory organs called “semicircular canals” in the inner ear which serve as a biological gyroscope. As you turn your head in a given direction, fluid in these canals shifts in relation to your movement. The shifting of this fluid activates specialized neurons that in turn activate other neurons to get the information of how you are turning from the ear, to the cerebellum, to the muscles that control the eye. However, there are circumstances where this line of communication may become overwhelmed or disrupted. This disruption causes our eyes to move even though our heads are still. When this happens, we get nystagmus.

For example, here is a video of someone experiencing the vestibulo-ocular reflex while spinning in a chair and nystagmus after spinning in a chair. In this instance, nystagmus happens when the person stops spinning in the chair because the fluid in the inner ear continues moving for a short time even though the head has stopped.

women is looking into the camera, her eyes show shee is looking to the side.
As seen in the video, nystagmus can cause uncontrollable eye movement after head movement has already stopped. Photo used under license by Olena Yakobchuk/Shutterstock.com.

Ataxia, the loss of coordinated movement, is caused by degeneration of the cerebellum. One of the main roles of the cerebellum is as an integration center for how we use incoming sensory information (touch, sight, balance, etc.) to direct how we move in space. Thus, we see that as ataxia worsens, complex voluntary movements like walking become harder to control. This can also disrupt how reflexes using balance and head movement, like the vestibulo-ocular reflex, work. As one’s head moves, the information on how the head is moving initially goes to a specific area of the cerebellum which then tells the eye muscles how to move.

When the cerebellar Purkinje cells of that area stop working properly, this channel of communication becomes overactive. The eye muscles begin to move sporadically as though the head was moving or swivelling even though it is staying still. This is an important symptom to address in patients with ataxia. Nystagmus disrupts sight and is tied to secondary symptoms such as dizziness and nausea. This combination of symptoms severely impedes a person’s independence and reduces their quality of life.

If you would like to learn more about nystagmus, take a look at these resources by Johns Hopkins and the American Academy of Ophthalmology.

Snapshot written by Carrie Sheeler and edited by Dr. Siddharth Nath.

Snapshot: What is Transcranial Direct Current Stimulation (tDCS)?

Transcranial Direct Current Stimulation (tDCS) is a non-invasive method of brain stimulation. It promotes or inhibits activities in specific parts of the brain. tDCS is an experimental treatment that has been shown to result in changes in motor, cognitive and behavioural activities. It may be a valuable tool for the treatment of neurological disorders including cerebellar ataxia.

How it works

Neurons communicate with each other is through an electrical event called the action potential. The cell membrane of neurons can create differences in the concentration of charged molecules, called ions, inside and outside the cell. This separation of ions creates a voltage called the membrane potential. When a signal needs to be transduced to other neurons, a series of voltage changes in the membrane potential called the action potential occurs. The action potential propagates along the arms of the neuron, like sending a message through the cell. Once the message reaches the end of the arm where it meets up with other neurons, the initial neuron releases its neurotransmitters that deliver the message to the next neuron. And thus, the cycle continues!

tDCS works by stimulating the neurons with a weak electrical current, through electrodes placed on the scalp of the patient. These electrodes can slightly increase or decrease the resting membrane potential. This process can make it easier or harder for an action potential to occur. This either promotes or inhibits activities in specific brain regions.

Artist's depiction fo the human brain. Electrical energy is swirling around it.
tDCS is a non-invasive method of brain stimulation that promotes or inhibits activities in specific parts of the brain. Photo used under license by Andrus Ciprian/Shutterstock.com.

Application in ataxia

Due to the ability of tDCS to reversibly modulate brain activity, clinical trials have been conducted in many neurological and psychiatric disorders. Notably, a randomized, double-blind trial in 61 patients with multiple subtypes of ataxia came to completion in March 2021. After treatment with tDCS, a significant improvement in both the motor and cognitive symptoms of ataxia was observed. Patients also self-reported improvement in quality of life. The clinical assessment for motor functions was done through the scale for the assessment and rating of ataxia and the international cooperative ataxia rating scale. Assessment for cognitive functions was done through the cerebellar cognitive affective syndrome scale.

The study found that patients who went through two repeated treatment sessions with ten weeks in between had significantly better improvement when compared to patients who went through only one session of treatment. Also, the improvements persisted on average 3 to 6 months post-treatment. This means that the benefits of tDCS might last longer than previously thought.

Risks and benefits

TDCS is considered non-invasive and since its initial application in 1998, no serious or ongoing side effects have been reported. Studies have also shown that the electrical current will not interfere with vital functions of the heart and the brain stem. However, tDCS is still in its infancy. More research needs to be conducted to improve our understanding of potential risks and benefits. Temporary side effects including a mild burning/itching sensation at the stimulation sites, headache, and moderate fatigue were reported in around 17% of the patients. On the flip side, the technique uses equipment that is available on the market for other medical purposes. This makes the procedure relatively inexpensive, easily administered, and using easily replaceable equipment. TDCS could also be used in combination with other treatment methods. However, more research on combination treatments needs to be conducted to test safety and effectiveness.

If you would like to learn more about Transcranial Direct Current Stimulation, take a look at these resources by Johns Hopkins Medicine and Neuromodec.

Snapshot written by Christina (Yi) Peng and edited by Dr. David Bushart.

Snapshot: What is Riluzole?

Riluzole, often sold under the trade name Rilutek, is a medication used for the treatment of amyotrophic lateral sclerosis (ALS). ALS is a fatal neurodegenerative disease that mainly affects neurons controlling muscle movements. The drug was approved by the FDA (1995), Health Canada (1997), and the European Commission (1996). It helps slow down disease progression and may extend patient survival. The medication is available in tablet and liquid form, generally well-tolerated. There are sometimes mild side effects, which may include loss of appetite, nausea, and abdominal pain.

Close up of a woman taking a pill with water
Riluzole has been used to treat ALS, and research has suggested it may also help with forms of ataxia. It is currently being tested in clinical trials. Photo used under license by fizkes/Shutterstock.com.

How does it work?

Exactly how Riluzole slows disease progression remains unknown. However, it is thought that its neuroprotective effects likely stem from reducing a phenomenon known as excitotoxicity.

Neurons communicate with each other through chemical messengers called neurotransmitters. The signalling of these messengers needs to be tightly controlled. Too little or too much signaling will disrupt normal functions of the brain and cause damage to cells. Excitotoxicity is the result of excessive signaling by glutamate, one of the most abundant neurotransmitters in the brain. Glutamate is also associated with many neurodegenerative diseases.

Riluzole prevents this excessive signaling through several mechanisms. It is hypothesized that the effectiveness of riluzole in ALS treatment is the result of this neuroprotective property.

Riluzole for Ataxia

The neuroprotective function of riluzole has been a point of interest for the treatment of other neurodegenerative diseases since its approval. Multiple clinical trials have been conducted for patients with neurodegenerative diseases including Parkinson’s disease, Huntington’s disease, multiple system atrophy, and ataxia.

In 2010, a pilot trial was conducted with 40 patients with cerebellar ataxia who showed a lower level of motor impairment, measured by the International Cooperative Ataxia Rating Scale. A follow-up trial was then performed in 2015 for 55 patients with spinocerebellar ataxia (SCA) or Friedreich’s ataxia. Similarly, patient impairment had improved by an alternative measurement using the Scale for the Assessment and Rating of Ataxia. These findings indicate the possibility of riluzole being an effective treatment for cerebellar ataxia. However, more long-term studies and ones that are specific to different types of SCA need to be conducted to confirm the results.

Riluzole in Development

Even though riluzole was discovered more than 25 years ago, variations of the drug are still under development. As ALS often affects a patient’s ability to swallow, a new formulation of riluzole that is absorbed by placing it under your tongue is being developed under the name Nurtec.

Another prodrug version of riluzole, named Troriluzole (BHV-4157), may be better absorbed by the body with fewer side effects. Troriluzole is currently in phase three clinical trial for patients with different types of SCA. The trial is expected to be complete by November 30, 2021, and will hopefully provide more insight into the effectiveness of Troriluzole in SCA patients.

If you would like to learn more about Riluzole, take a look at these resources by the ClinicalTrials.gov and the Mayo Clinic.

Snapshot written by Christina (Yi) Peng and edited by Terry Suk.

Snapshot: What is Cerebrospinal Fluid (CSF)?

Public transit may not be the first thing that comes to mind when we think about the brain, but it’s a great way to understand how all the parts of the central nervous system work together. Nutrients, hormones, and other important molecules (the passengers) need to get on and off at different stations to do their work. They might first stop at the large internal chambers within the brain, called ventricles. From the ventricles, they can get to the central canal in the spinal cord, as well as the subarachnoid space. The subarachnoid space is a space between two membranes that surround the brain and spinal cord. It provides a stable structure for a network of veins and arteries.

The passengers are shuttled from station to station by the cerebrospinal fluid (CSF), a clear, colourless fluid that provides the central nervous system with necessary nutrients and hormones while carrying away waste products. CSF also cushions the brain and spinal cord by circulating between layers of tissues surrounding them. The whole public transit system is enclosed: the subarachnoid space and the ventricles are connected to the central canal in the spinal cord, forming a single reservoir for CSF.

Cerebrospinal fluid written in colorful letters under a Stethoscope on wooden background
Photo used under license by Sohel Parvez Haque/Shutterstock.com.

CSF is made by the choroid plexus, a collection of tiny blood vessels called capillaries. Capillaries filter the blood and secrete it into the ventricles. When the pressure of CSF is less than the pressure in the capillaries, CSF flows out and into the ventricles. When the pressure of CSF is greater than that of the bloodstream, the extra fluid is absorbed from the subarachnoid space and into sinuses (large areas filled with blood), where it can flow into the surrounding veins. The blood supply in the central nervous system tightly regulates the movement of molecules or cells between the blood and brain. This blood-brain barrier is crucial for protecting the brain from toxins and pathogens. Dysfunction of this specific system contributes to the development of neurological diseases.

Anatomical labeled scheme with human head and inside of skull, including superior sigittal sinus, ventricles, arachnoid Villi and spinal cord central canal.
Structure of the ventricles and central canal components that contribute to the public transit system. Photo used under license by VectorMine/Shutterstock.com.

Why is CSF Important for Neurodegenerative Diseases?

In neurodegenerative diseases like Spinocerebellar Ataxias, CSF contains molecules that can be used as biomarkers. Biomarkers are disease-specific proteins that change in concentration depending on disease stages. Biomarkers provide information on disease progression, with or without the impact of therapeutics. They are also crucial for understanding how disease processes work and assist in developing treatments.

The development of intrathecal injections, injecting into the central canal for distribution to the central nervous system (for example, spinal anesthesia), has been monumental for administering drugs in neurodegenerative diseases. In other words, not only can the public transit system of the central nervous system be investigated to see what passengers are associated with the disease, but it can be used to deliver “medicine passengers” to the place where the disease occurs.

If you would like to learn more about Cerebrospinal Fluid, take a look at these resources by MedlinePlus and WebMD.

Snapshot written by Kaitlyn Neuman and edited by Dr. Tamara Maiuri.

Snapshot: What is Neurogenesis?

Neurons are the cells that serve as building blocks of the nervous system. The brain contains an enormous variety of neurons, and they all need to get a start somewhere. The process by which neurons are formed is called neurogenesis.

An artist’s drawing of neurons in the brain. Photo used under license by Andrii Vodolazhskyi/Shutterstock.com.

When does neurogenesis happen?

Nearly all neurogenesis occurs before the age of 2 when the brain is in the early stages of being formed and refined. While most cells in the body are replaced as they wear out or get injured, neurons in the brain do not. By young adulthood, the brain has largely stopped making new neurons. Other than serving as an excellent reason to wear a helmet and otherwise protect your head from injury, this lack of new neuron formation doesn’t have a noticeable effect on how we go about our daily lives. After all, neurons are an incredibly adaptable cell type that readily change in response to a person’s environment and experiences.

In the past few decades, we have learned that there is an exception to the “all neurons are born early in life” rule. Some research has shown that new neurons can, in fact, be formed during adulthood in specific brain areas. For example, the hippocampus, a brain structure important for its role in forming and maintaining memories, continues to create neurons over the course of one’s life.

The purpose of these newly generated neurons is still debated. However, numerous studies have shown that neuron formation in the hippocampus is reduced in instances of psychiatric and neurodegenerative disorders. This includes certain types of ataxia like SCA1. This is thought to contribute to changes in cognitive function and mood, though the exact mechanisms are still being determined.

Why is neurogenesis interesting for the spinocerebellar ataxias (SCAs), aren’t these neurodegenerative disorders?

Since the discovery of neurodegenerative disorders, most research has focused on symptoms and how to delay symptom onset. This view sees neurodegenerative disorders, like the SCAs, as outcomes of mid to late-life when the toxic effects of mutant proteins become suddenly rampant. However, these disorders are caused by proteins that are present from the very earliest stages of brain formation.

In 2018, researchers studying SCA1 found that neurogenesis is increased in the cerebellum of young mice. This changed how the cerebellum communicates with the rest of the brain. This suggests that cerebellar function can be affected by more than neuronal loss. It could be of wider interest in the SCAs given the cerebellar dysfunction that is common between them. No research on cerebellar neurogenesis has been performed in other SCAs by this point. However, there are some indications that neurogenesis may also be altered in SCA2.

Additionally, Huntington’s Disease, a polyglutamine repeat disorder in the same disease family as several SCAs, has been shown to have increased neurogenesis in the cortex in both young mice and prenatal babies. The combination of these recent studies has made early neuron formation an area of key interest in the study of neurodegenerative disorders.

Current theories in the field contend that while the brain can compensate for changes in neuron numbers in early life, altered neurogenesis could be creating unique brain circuitry in individuals with known disorder-causing protein mutations. These changes could make them more vulnerable to neuronal dysfunction and neurodegeneration later in life.

Evidence for changed neurogenesis in SCAs, both early and late in life, adds a new layer of consideration to what we broadly think of as a mid- to late-life neurodegenerative disease. Additional research in coming years will hopefully provide more insight into how these additional facets of neural health may inform the development of new therapies.

If you would like to learn more about neurogenesis, take a look at these resources by the Queensland Brain Insitute and News-Medical.

Snapshot written by Carrie Sheeler and edited by Dr. Chloe Soutar.

Additional References

Cvetanovic M, Hu YS, Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017 Apr;16(2):340-347. doi: 10.1007/s12311-016-0794-9. PMID: 27306906; PMCID: PMC5510931.

Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development. 2017 Mar 1;144(5):905-915. doi: 10.1242/dev.140657. Epub 2017 Feb 7. PMID: 28174239; PMCID: PMC5374347.

Xia G, Santostefano K, Hamazaki T, Liu J, Subramony SH, Terada N, Ashizawa T. Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. J Mol Neurosci. 2013 Oct;51(2):237-48. doi: 10.1007/s12031-012-9930-2. Epub 2012 Dec 9. PMID: 23224816; PMCID: PMC3608734.

Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, Kassem R, Lenoir S, Agasse F, Braz BY, Liu JP, Ighil J, Tessier A, Zeitlin SO, Duyckaerts C, Dommergues M, Durr A, Humbert S. Huntington’s disease alters human neurodevelopment. Science. 2020 Aug 14;369(6505):787-793. doi: 10.1126/science.aax3338. Epub 2020 Jul 16. PMID: 32675289; PMCID: PMC7859879.