Subproduto da produção do óleo de canola apresenta potencial terapêutico para as doenças de Machado-Joseph e Parkinson

Escrito por Dr. Maria do Carmo Costa, editado por Dr. Hayley McLoughlin. Inicialmente publicado em 24 de abril de 2020. Traduzido para o português por Priscila P. Sena.

Em um trabalho de colaboração utilizando modelo animal, pesquisadores de Portugal e do Reino Unido descobrem um subproduto do óleo de canola promissor para o tratamento das doenças de Machado-Joseph (ou ataxia espinocerebelar do tipo 3 – SCA3) e Parkinson.

Compostos isolados ou extratos (contendo uma mistura de compostos) de determinadas plantas têm se mostrado promissores como potenciais drogas anti-envelhecimento, ou como drogas terapêuticas para doenças neurodegenerativas. Alguns desses compostos ou extratos vegetais podem aumentar a capacidade celular de combater o estresse oxidativo anormal, típico do envelhecimento e de doenças neurodegenerativas. A doença de Machado-Joseph (também conhecida como ataxia espinocerebelar do tipo 3) e a doença de Parkinson são duas doenças neurodegenerativas nas quais a incapacidade celular de combater o estresse oxidativo contribui para a perda neuronal. Nesse estudo, os grupos do Dr. Thoo Lin e Dr. Maciel fizeram uma parceria para testar o potencial terapêutico do bagaço de colza (“rapeseed pomace”, RSP), um extrato residual com propriedades antioxidantes obtido após a produção do óleo de canola. Os experimentos foram realizados em modelo nematódeo (Caenorhabditis elegans) das doenças de Machado-Joseph e Parkinson.

Canola field with snowcapped mountains in the background, July 1990
Plantação de canola com montanhas cobertas de neve ao fundo, cortesia de imagem da USDA NRCS Montana on Flickr.

A doença de Machado-Joseph é uma ataxia neurodegenerativa dominante, causada por uma expansão trinucleotídica CAG no gene ATXN3 que resulta em uma proteína mutante (ATXN3). Enquanto em indivíduos não afetados essa expansão trinucleotídica contém de 12 a 51 repetições CAG, em pacientes de Machado-Joseph essa expansão varia entre 55 e 88 repetições. Como cada CAG no gene ATXN3 codifica um aminoácido glutamina (Q), a proteína mutante contém um trecho de Qs contínuos, conhecido como poliglutamina (polyQ).

A doença de Parkinson, caracterizada pela perda de neurônios dopaminérgicos, pode ser causada tanto por mutações genéticas quanto por fatores ambientais. Mutações nos genes codificadores da proteína α-sinucleína e da enzima tirosina hidroxilase (uma enzima crucial para a produção de dopamina) estão entre as causas genéticas da doença de Parkinson.

Nesse estudo, Pohl, Teixeira-Castro e colaboradores utilizaram modelos nematódeos para a doença de Machado-Joseph, geneticamente modificados para a produção neuronal da proteína mutante humana ATXN3. A proteína mutante forma agregados proteicos nos neurônios dos nematódeos e causa problemas de motilidade, replicando aspectos da doença de Machado-Joseph em humanos.

Os pesquisadores também utilizaram nematódeos modificados geneticamente para expressar a proteína ATXN3 normalmente expressa em humanos não afetados pela doença de Machado-Joseph. Esses nematódeos apresentam movimentos normais e a proteína ATXN3 não forma agregados proteicos nos neurônios, o que reproduz a condição normal humana.

Modelos nematódeos que apresentam perda de neurônios dopaminérgicos também foram utilizados, representando a doença de Parkinson causada tanto por fatores genéticos quanto por fatores ambientais. Eles utilizaram nematódeos geneticamente modificados para a produção da proteína α-sinucleína humana, ou para a superexpressão da enzima tirosina hidroxilase, ou ainda nematódeos tratados com um composto químico que leva à morte de neurônios dopaminérgicos.

Os autores mostraram nesse estudo que a administração de RSP, um subproduto da produção do óleo de canola, aos modelos nematódeos das doenças de Machado-Joseph e Parkinson, reduz determinados sinais dessas doenças. Resumidamente, os modelos nematódeos da doença de Machado-Joseph tratados com RSP apresentaram uma recuperação dos movimentos a um nível comparável aos animais não afetados, e os modelos nematódeos da doença de Parkinson tratados com RSP mostraram uma preservação dos neurônios dopaminérgicos.

Em seguida, os pesquisadores mostraram que o tratamento com RSP recuperou os nematódeos de certos sinais das doenças de Machado-Joseph e Parkinson através da ativação de vias celulares que protegem contra o estresse oxidativo. Especificamente, os autores encontraram evidências de uma via protetora em particular, conhecida como resposta celular antioxidante dependente de glutationa S-transferase 4 (GST-4), que foi ativada em modelos nematódeos das doenças de Machado-Joseph e Parkinson tratados com RSP.

Ainda que sejam necessários mais estudos, particularmente em animais vertebrados, para que se compreenda completamente como o extrato de RSP recupera o organismo de sinais das doenças de Machado-Joseph e Parkinson, a enzima GST-4 parece ser um bom alvo terapêutico para essas doenças. Esse estudo, acima de tudo, demonstra que o aumento de defesas particulares do organismo contra o estresse oxidativo é uma rota potencial para o desenvolvimento de estratégias terapêuticas para as doenças de Machado-Joseph e Parkinson.

Palavras-chave

Repetições CAG: um trecho de DNA composto pela sequência CAG repetida muitas vezes. Todos nós temos repetições CAG em alguns genes, mas se essas repetições excederem um limite de tamanho elas podem causar doenças, como é o caso da doença de Machado-Joseph.

Caenorhabditis elegans: um animal bem pequeno, parecido com uma minhoca, denominado nematódeo. C. elegans são organismos muito simples, mas podem ser utilizados para aprendermos mais sobre organismos mais complexos, como o organismo humano. Para aprender mais, visite o nosso Snapshot em C. elegans.

Neurônios dopaminérgicos: um tipo de neurônio que produz dopamina, encontrado no sistema nervoso. Apesar de representarem menos de 5% de todos os neurônios do corpo, eles exercem um papel importante no movimento, humor e estresse.

Estresse oxidativo: um tipo de perturbação do funcionamento normal de uma célula, causado por um desbalanço dos níveis de espécies reativas de oxigênio. Essas espécies de oxigênio são produzidas como um subproduto normal do metabolismo celular e geralmente são eliminadas pela célula sem grandes transtornos. Quando as células são incapazes de eliminar de forma suficiente essas espécies reativas de oxigênio, essas moléculas começam a acumular e causar danos a componentes que formam estruturas críticas da célula, como lipídeos, proteínas e o DNA. Conforme envelhecemos, as células naturalmente se tornam menos eficientes em eliminar espécies reativas de oxigênio, e experimentamos um nível mais alto de estresse oxidativo.

Declaração de conflito de interesse

Os autores e o editor declaram não haver conflito de interesse.

Dois dos autores do artigo original (P. Maciel e F. Pohl) contribuem para o SCAsource. Nenhum desses autores teve qualquer contribuição à escrita ou edição desse resumo.

Citação do artigo revisado

Pohl F, Teixeira-Castro A, Costa M, Lindsay V, Fiúza-Fernandes J, Goua M, Bermano G, Russell W, Maciel P, Kong Thoo Lin P. GST-4-dependent suppression of neurodegeneration in C. elegans models of Parkinson’s and Machado-Joseph disease by rapeseed pomace extract supplementation. Frontiers in neuroscience. 2019;13:1091. doi: 10.3389/fnins.2019.01091

Arrival of SCA1-fish: Expanding the research tools to study Spinocerebellar ataxia type 1

Written by Dr. Marija Cvetanovic Edited by Dr. Larissa Nitschke

Elsaey and colleagues develop a new animal model of SCA1 using zebrafish. These SCA1-fish can help researchers learn more about what happens to neurons as disease progresses.

Spinocerebellar ataxia type 1 is dominantly inherited spinocerebellar ataxia caused by the lengthening of the polyglutamine repeats in the protein ataxin-1. Patients with SCA1 slowly lose their sense of balance, and can experience other symptoms like depression. Studies have shown that a key feature of SCA1 is the loss of Purkinje cells in the patient’s cerebellum.

 Since the discovery of SCA1 in 1993, the use of mouse and cell models of disease have really helped researchers understand how mutant ataxin-1 affects Purkinje cells to cause SCA1 symptoms. Each model has its advantages and disadvantages. You need to consider several things when picking which model to use to study SCA1, like cost and similarity to humans.

For example, mouse models of SCA1 are useful to study pathogenesis at the molecular, cellular, tissue, and behavioral levels. But mice are costly and can take a long time to develop. It is also difficult to study the loss of Purkinje cells in live mice. On the other hand, fruit fly models are relatively cheap and grow really quickly, which allows for high-throughput studies of how different genes affect SCA1. But since fruit flies are evolutionarily distant from humans and do not have a cerebellum, they cannot be used to study Purkinje cells loss.

A school of eight zebrafish swimming in front of a white background. They are 2.5 cm to 4 cm long and have blue stripes
Zebrafish are small freshwater fish that are a common model organism for scientific research. Photo used under license by Horvath82/Shutterstock.com.

This is why creating a SCA1 zebrafish model is exciting. Zebrafish have very similar cerebellar anatomy and function to mammals. Also, Zebrafish larval stages are almost transparent, allowing for non-invasive imaging. Zebrafish are also much more cost-effective than mice and are easier to modify.

Continue reading “Arrival of SCA1-fish: Expanding the research tools to study Spinocerebellar ataxia type 1”

Measuring neurodegeneration in spinocerebellar ataxias

Written by Dr Hannah K Shorrock Edited by Dr. Maria do Carmo Costa

Neurofilament light chain predicts cerebellar atrophy across multiple types of spinocerebellar ataxia

A team led by Alexandra Durr at the Paris Brain Institute identified that the levels of neurofilament light chain (NfL) protein are higher in SCA1, 2, 3, and 7 patients than in the general population. The researchers also discovered that the level of NfL can predict the clinical progression of ataxia and changes in cerebellar volume. Because of this, identifying patients’ NfL levels may help to provide clearer information on disease progression in an individualized manner. This in turn means that NfL levels may be useful in refining inclusion criteria for clinical trials.

The group enrolled a total of 62 SCA patients with 17 SCA1 patients, 13 SCA2 patients, 19 SCA3 patients, and 13 SCA7 patients alongside 19 age-matched healthy individuals (“controls”) as part of the BIOSCA study. Using an ultrasensitive single-molecule array, the group measured NfL levels from blood plasma that was collected after the participants fasted.

The researchers found that NfL levels were significantly higher in SCA expansion carriers than in control participants at the start of the study (baseline). In control individuals, the group identified a correlation between age and NfL level that was not present among SCA patients. This indicates that disease stage rather than age plays a larger role in NfL levels in SCAs.

Looking at each disease individually, the group was able to generate an optimal disease cut-off score to differentiate between control and SCA patients. By comparing the different SCAs, the research group found that SCA3 had the highest NfL levels among the SCAs studied. As such, SCA3 had the most accurate disease cut-off level with 100% sensitivity and 95% specificity of defining SCA3 patients based on NfL levels.

Artist's drawing of a group of Laboratory Scientist sturying a larger-than life human brain
A team from the Paris Brain Institute identify that SCA1, 2, 3, and 7 patients have higher levels of NfL protein than the general population. Photo used under license by ivector/Shutterstock.com.
Continue reading “Measuring neurodegeneration in spinocerebellar ataxias”

Scientists develop a new approach to assessing Ataxia at home

Written by Ziyang Zhao Edited by Dr. Hayley McLoughlin

A newly developed smartphone application will allow patients to assess ataxia at home.

There’s an interesting problem in science that’s often overshadowed in the scientific community. It’s not as flashy or as newsworthy as most scientific headlines, like the eradication of Polio or the creation of the coronavirus vaccine, but its importance looms nonetheless. That problem is the monumental task of getting people to assess themselves.

Take this interesting bit: The American Cancer Society found that nearly 100% of Americans are aware of the benefits of monthly screenings for Colorectal Cancer — a preventable and treatable form of cancer, if detected early — yet nearly 50,000 Colorectal Cancer-related deaths occur each year in the United States (American Cancer Society, 2016). Alongside that first statistic, the American Cancer Society had also asked why an unscreened individual chooses to remain so. An important reason, they noted, was patient concern over the complexities of taking a test: taking time off from work, getting a ride home, and high out-of-pocket expenses.

In Ataxia-based diseases, testing is similarly cumbersome and accessibility for assessment is not readily available. The most common way to measure the degree of one’s level of Ataxia is through the Scale for assessment and rating of ataxia (SARA) score, which evaluates 9 ataxia-affected abilities to produce a composite score. The problem, however, is that the SARA test is cumbersome. It’s a costly assessment that requires the patient to travel to their local hospital and meet with a testing expert.

Camera on tripod takng a video
The SARAhome test involves a person performing a series of physical tests. They record themselves using a tablet or smartphone on top of a tripod. Photo used under license by Mascha Tace/Shutterstock.com.

In this study, the researchers devised an Ataxia assessment matching the SARA test that can be performed at home, which they call SARAhome. While the original SARA test assessed 8 attributes, this new Ataxia test only assessed 5, including gait, stance, speech, nose-finger test, fast alternating hand movements. To make SARAhome even easier to take at home, the researchers also incorporated some modifications to their selected 5 tests from the original SARA test, including reducing required walking distances, performing fast-alternating movement and nose-finger tests on a chair, and replacing an investigator’s finger in the nose finger test with a tape-mark on the wall. These video recordings would be sent to an experienced rater, who would subsequently produce the score.

Continue reading “Scientists develop a new approach to assessing Ataxia at home”

Identificación de moléculas aprobadas por la FDA para tratar SCA6

Escrito por la Dra. Hannah Shorrock Editado por la Dra. Larissa Nitschke. Publicado inicialmente en el 7 de mayo de 2021. Traducción al español fueron hechas por FEDAES y Carlos Barba.

Pastor y sus colegas identifican pequeñas moléculas aprobadas por la FDA que reducen selectivamente la proteína tóxica expandida con poliglutamina en SCA6.

Apuntar selectivamente a los genes que causan enfermedades sin alterar las funciones celulares es esencial para el desarrollo exitoso de la terapia. En la ataxia espinocerebelosa tipo 6 (SCA6), lograr esta selectividad es particularmente complicado ya que el gen que causa la enfermedad produce dos proteínas que contienen un tracto de poliglutamina expandido. En este estudio, Pastor y sus colegas identificaron varias moléculas pequeñas aprobadas por la Administración de Alimentos y Medicamentos (FDA) que reducen selectivamente los niveles de una de estas proteínas que contienen poliglutamina sin afectar los niveles de la otra proteína, que es esencial para la función normal del cerebro. Mediante el uso de medicamentos ya aprobados por la Administración de Alimentos y Medicamentos de los Estados Unidos Para tratar otras enfermedades, conocidas como medicamentos aprobados por la FDA, el equipo espera reducir el período de tiempo para el desarrollo de la terapia preclínica.

SCA6 es una ataxia autosómica dominante que causa un deterioro progresivo del movimiento y la coordinación. Esto se debe a la disfunción y muerte de las células cerebrales, incluidas las neuronas de Purkinje en el cerebelo . SCA6 es causada por una expansión de repetición CAG en el gen CACNA1A. CACNA1A codifica dos proteínas: la subunidad a1A, la principal subunidad formadora de poros del canal de iones de calcio dependiente de voltaje de tipo P / Q , así como un factor de transcripción llamado a1ACT.

La subunidad a1A es esencial para la vida. Su función se ve menos afectada por la presencia del tracto de poliglutamina expandido que la de a1ACT. El factor de transcripción, a1ACT, controla la expresión de varios genes implicados en el desarrollo de las células de Purkinje. La expresión de la proteína a1ACT que contiene un tracto de poliglutamina expandido en ratones causa atrofia y ataxia cerebelosa. Si bien la reducción de los niveles de la subunidad a1A puede tener poco efecto sobre la enfermedad de SCA6 pero afectar la función normal de las células cerebrales, la reducción de los niveles de a1ACT puede mejorar la enfermedad en SCA6. Por lo tanto, Pastor y sus colegas decidieron probar la hipótesis de que la reducción selectiva de los niveles de la proteína a1ACT sin afectar los niveles de la proteína a1A puede ser un enfoque terapéutico viable para SCA6.

Colorful pile of medicines in blister packs which color are White, Yellow, Black and Pink pills.
Mediante el uso de medicamentos ya aprobados por la FDA, el equipo espera reducir el período de tiempo para el desarrollo de la terapia preclínica.  Foto utilizada bajo licencia por Wanchana Phuangwan / Shutterstock.com .
Continue reading “Identificación de moléculas aprobadas por la FDA para tratar SCA6”