Regulating ataxin-1 expression as a therapeutic avenue for SCA1

Written by Dr. Hannah Shorrock   Edited by Dr. Hayley McLoughlin

Nitschke and colleagues identify a microRNA that regulates ataxin-1 levels and rescues motor deficits in a mouse model of SCA1

What if you could use systems already in place in the cell to regulate levels of toxic proteins in disease? This is the approach that Nitschke and colleagues took to identify the cellular pathways that regulate ataxin-1 levels. Through this strategy, the group found a microRNA, a small single-stranded RNA, called miR760, that regulates levels of ataxin-1 by directly binding to its mRNA and inhibiting expression. By increasing levels of miR760 in a mouse model of SCA1, ataxin-1 protein levels decreased and motor function improved. This approach has the potential to identify possible therapies for SCA1. It may also help identify disease-causing mutations in ataxia patients with unknown genetic causes.

Spinocerebellar Ataxia type 1 (SCA1) is an autosomal dominant disease characterized by a loss of coordination and balance. SCA1 is caused by a CAG repeat expansion in the ATXN1 gene. This results in the ataxin-1 protein containing an expanded polyglutamine tract. With the expanded polyglutamine tract, ataxin-1 is toxic to cells in the brain and leads to dysfunction and death of neurons in the cerebellum and brainstem.

As with all protein-coding genes, surrounding the protein coding region of ATXN1 gene are the 5’ (before the coding sequence) and 3’ (after the coding sequence) untranslated regions (UTRs). These regions are not translated into the final ataxin-1 protein product but are important for the regulation of this process. Important regulation factors called enhancers and repressors of translation located in 5’ and 3’ UTRs. ATXN1 has a long 5’ UTR. Genes that require fine regulation, such as growth factors, are often found to have long 5’ UTRs: the longer a 5’ UTR, the more opportunity for regulation of gene expression. The group, therefore, tested the hypothesis that the 5’ UTR is involved in regulating the expression of ataxin-1.

In their initial studies, Nitschke and colleagues identified that the ATXN1 5’UTR is capable of reducing both protein and RNA levels when placed in front of (5’ to) a reporter coding sequence. One common mechanism through which this regulation of gene expression could be occurring is the binding of microRNAs, or miRNAs, to the ATXN1 5’UTR. miRNAs are short single-stranded RNAs that form base pairs with a specific sequence to which the miRNA has a complementary sequence; this leads to regulation of expression of the mRNA to which the miRNA is bound.

3d illustration of single-strand ribonucleic acid
Artist drawing of single-stranded RNA. Photo used under license by nobeastsofierce/

Using an online microRNA target prediction database called miRDB, the group identified two microRNAs that could be responsible for these changes in gene expression through binding to the ATXN1 5’ UTR. By increasing the expression of one of these microRNAs, called miR760, ataxin-1 protein levels were reduced in cell culture. Conversely, using a miR760 inhibitor so that the miRNA could not perform its normal functions led to increased levels of ataxin-1. Together this shows that miR760 negatively regulates ataxin-1 expression.

Continue reading “Regulating ataxin-1 expression as a therapeutic avenue for SCA1”

Identifying FDA-approved molecules to treat SCA6

Written by Dr Hannah Shorrock Edited by Dr. Larissa Nitschke

Pastor and colleagues identify FDA-approved small molecules that selectively reduce the toxic polyglutamine-expanded protein in SCA6.

Selectively targeting disease-causing genes without disrupting cellular functions is essential for successful therapy development. In spinocerebellar ataxia type 6 (SCA6), achieving this selectivity is particularly complicated as the disease-causing gene produces two proteins that contain an expanded polyglutamine tract. In this study, Pastor and colleagues identified several Food and Drug Administration (FDA) approved small molecules that selectively reduce the levels of one of these polyglutamine-containing proteins without affecting the levels of the other protein, which is essential for normal brain function. By using drugs already approved by the United States Food and Drug Administration to treat other diseases, referred to as FDA-approved drugs, the team hopes to reduce the time frame for pre-clinical therapy development.

SCA6 is an autosomal dominant ataxia that causes progressive impairment of movement and coordination. This is due to the dysfunction and death of brain cells, including Purkinje neurons in the cerebellum. SCA6 is caused by a CAG repeat expansion in the CACNA1A gene. CACNA1A encodes two proteins: the a1A subunit, the main pore-forming subunit of the P/Q type voltage-gated calcium ion channel, as well as a transcription factor named a1ACT.

The a1A subunit is essential for life. Its function is less affected by the presence of the expanded polyglutamine tract than that of a1ACT. The transcription factor, a1ACT, controls the expression of various genes involved in the development of Purkinje cells. Expressing a1ACT protein containing an expanded polyglutamine tract in mice causes cerebellar atrophy and ataxia. While reducing levels of the a1A subunit may have little effect on SCA6 disease but impact normal brain cell function, reducing levels of a1ACT may improve disease in SCA6. Therefore, Pastor and colleagues decided to test the hypothesis that selectively reducing levels of the a1ACT protein without affecting levels of the a1A protein may be a viable therapeutic approach for SCA6.

Colorful pile of medicines in blister packs which color are White, Yellow, Black and Pink pills.
By using drugs already approved by the FDA, the team hopes to reduce the time frame for pre-clinical therapy development. Photo used under license by Wanchana Phuangwan/
Continue reading “Identifying FDA-approved molecules to treat SCA6”

Elongating expansions in HD and SCA1

Written by Dr. Marija Cvetanovic  Edited by Dr. Larissa Nitschke

Expanded CAG repeats are the cause of Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). Longer inherited CAG expansions correlate with the earlier disease onset and worse symptoms. We know from past research that these expansions are unstable and become longer from one generation to the next.

This study by Mouro Pinto and colleagues shows that repeat expansions also keep getting longer throughout life in patients affected with HD and SCA1 in many cells, including brain, muscle, and liver cells.

Expansion of CAG repeats in different human genes cause several neurodegenerative diseases. This includes Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). These long CAG repeats in disease genes tend to be unstable in the sperm and egg cells. This instability in sperm and egg cells can result in either longer repeat tracts (expansions) or shorter ones (contractions) in the children of affected patients. Unfortunately, CAG repeats more often expand than shrink. This results in a worse disease in the affected children, with earlier onset and more severe symptoms than their parents.

However, repeat instability and expansion of repeats are not confined to the sperm and egg cells. It can occur in many cells in a patient’s body. This ongoing expansion that occurs in other body cells is called somatic expansion.

Abstract background of DNA sequence
Long CAG repeats in disease genes can be unstable and expand. Photo used under license by Enzozo/

As affected patients age, the ongoing somatic expansion, especially in the brain, may accelerate the onset of neuronal dysfunction and loss of neurons and. This may worsen the disease progression. This has been previously shown in mouse models and patients with HD. However, those studies examined expansion in only a few brain regions and tissues outside the brain (called peripheral tissues).

In this study lead by Dr. Vanessa C. Wheeler, the authors systematically examined repeat instability in 26 different regions of the brain, post-mortem cerebrospinal fluid (CSF) and nine peripheral tissues, including testis and ovaries from seven patients with HD and one patient with SCA1.

Continue reading “Elongating expansions in HD and SCA1”

El BDNF puede revertir la ataxia en ratones SCA1

Escrito por Anna Cook Editado por Dr. David Bushart. Publicado inicialmente en el 19 de Marzo de 2021. Traducción al español fueron hechas por FEDAES y Carlos Barba.

El factor neurotrófico derivado del cerebro -BDNF- puede prevenir la ataxia en ratones SCA1. Una nueva investigación muestra que el tratamiento funciona incluso si se inicia después de que los ratones desarrollan signos de ataxia.

SCA1 es una enfermedad neurodegenerativa causada por una mutación en el gen Ataxin1 . Las personas con SCA1 a menudo desarrollan síntomas alrededor de los 30-40 años, aunque esto puede variar. Los síntomas más comunes incluyen ataxia o problemas de movimiento que dificultan moverse y caminar. Estos síntomas empeoran progresivamente y eventualmente provocan problemas para tragar o hablar. Actualmente no existe cura para SCA1, por lo que es importante que se realicen investigaciones sobre posibles tratamientos.

El laboratorio de la Dra. Marija Cvetanovic de la Universidad de Minnesota ha estado utilizando un modelo de ratón de SCA1 para tratar de identificar nuevos tratamientos. En el pasado, estos investigadores han demostrado que una molécula llamada factor neurotrófico derivado del cerebro (BDNF) podría retrasar la aparición de ataxia en un modelo de ratón de SCA1.

A laboratory mouse sitting on a researcher's hand.
La investigación con ratones SCA1 muestra que el tratamiento con BDNF puede tener un impacto, incluso después de que comienzan a aparecer los síntomas de la ataxia.. Foto utilizada bajo licencia por unoL/

El BDNF es una molécula que se encuentra en el cerebro y es muy importante para el desarrollo saludable del cerebro. Es necesario para que muchos procesos del cerebro funcionen con normalidad. Los investigadores demostraron que los niveles de BDNF se redujeron en los cerebros de los ratones SCA1. Los investigadores inyectaron BDNF en los cerebros de estos ratones para intentar compensar el BDNF perdido. Este tratamiento, antes de que los ratones comenzaran a desarrollar síntomas de ataxia, previno la aparición de problemas motores y la muerte de las células de Purkinje.

Este trabajo anterior fue muy prometedor, pero había un problema. En este estudio, el tratamiento solo se probó antes de que los ratones SCA1 desarrollaran signos de problemas motores o cambios en sus cerebros. En el mundo real, si queremos ayudar a los pacientes con SCA1, necesitamos tratamientos que funcionen incluso una vez que la enfermedad haya comenzado a progresar. Por lo tanto, era importante que los investigadores averiguaran si este tratamiento funcionaría más adelante en la progresión de la enfermedad. Eso es exactamente lo que hicieron a continuación: en diciembre de 2020, el laboratorio de Cvetanovic publicó los resultados de su estudio que probaba el BDNF como tratamiento después de que los ratones habían comenzado a desarrollar signos de SCA1.

Continue reading “El BDNF puede revertir la ataxia en ratones SCA1”

Eliminación de la proteína ataxina-2 agregada como vía terapéutica para SCA2

Escrito por el Dr. Vitaliy Bondar Editado por el Dr. Hayley McLoughlin. Publicado inicialmente en el 5 de febrero de 2021. Traducción al español fueron hechas por FEDAES y Carlos Barba.

Una nueva investigación sugiere que la proteína ataxina-2 mutante abruma a las células en SCA2, lo que lleva a una disminución de la autofagia y la eliminación de las proteínas dañadas.

Se pueden hacer muchas comparaciones entre células y seres humanos. Al igual que los humanos, las células pueden acumular basura y desechos en ciertos momentos y este desorden con el tiempo se vuelve problemático e incluso tóxico. Esto es precisamente lo que Jonathan Henry Wardman y sus colegas de la Universidad de Copenhague decidieron investigar a nivel celular. Preguntaron si la falta de una eliminación adecuada de las proteínas defectuosas de la enfermedad afecta la supervivencia y el bienestar celular.

Los investigadores optaron por estudiar células derivadas de un paciente que tiene ataxia espinocerebelosa tipo 2 (SCA2). La causa de SCA2 es la expansión de la repetición CAG en el gen ATAXIN-2 , que codifica la cadena de aminoácidos de poliglutamina en una proteína de unión al ARN , ataxina-2. Se encuentra que la proteína ATXN2 expandida poliQ defectuosa se agrega dentro de la célula y las horas extraordinarias pueden afectar su supervivencia. La acumulación de productos proteicos agregados derivados de genes mutados es un sello distintivo de muchos tipos de ataxias espinocerebelosas, así como de otras formas de trastornos neurodegenerativos como la enfermedad de Parkinson.

No está claro cómo la agregación de proteínas afecta la supervivencia celular. Sin embargo, se han correlacionado múltiples defectos celulares con la agregación de ataxina-2. Por ejemplo, se ha informado que las mitocondrias que generan energía para una célula funcionan de manera anormal en modelos celulares SCA2. Además, un mecanismo de depuración celular, llamado autofagia , que es responsable de limpiar los compartimentos celulares defectuosos y ciertas proteínas rotas, se muestra menos eficaz en varios modelos de SCA2. Estos mecanismos los autores decidieron investigar en su artículo de investigación recientemente publicado.

scientist using microscope
Una nueva investigación que utiliza células SCA2 arroja luz sobre las causas de los síntomas de la enfermedad. Foto de Chokniti Khongchum en

Los científicos identificaron por primera vez la evidencia de disfunción celular SCA2 mediante la detección de una elevación significativa de los niveles de caspasa-9 y caspasa-8. Son proteínas que indican estrés celular y muerte. Los autores plantearon la hipótesis de que dicha disfunción celular puede deberse a la acumulación de ataxina-2 defectuosa. Para probar esta hipótesis, decidieron bloquear sistemáticamente dos vías celulares que procesan proteínas defectuosas: proteostasis y autofagia.

Continue reading “Eliminación de la proteína ataxina-2 agregada como vía terapéutica para SCA2”