Snapshot: What is Neurogenesis?

Neurons are the cells that serve as building blocks of the nervous system. The brain contains an enormous variety of neurons, and they all need to get a start somewhere. The process by which neurons are formed is called neurogenesis.

An artist’s drawing of neurons in the brain. Photo used under license by Andrii Vodolazhskyi/Shutterstock.com.

When does neurogenesis happen?

Nearly all neurogenesis occurs before the age of 2 when the brain is in the early stages of being formed and refined. While most cells in the body are replaced as they wear out or get injured, neurons in the brain do not. By young adulthood, the brain has largely stopped making new neurons. Other than serving as an excellent reason to wear a helmet and otherwise protect your head from injury, this lack of new neuron formation doesn’t have a noticeable effect on how we go about our daily lives. After all, neurons are an incredibly adaptable cell type that readily change in response to a person’s environment and experiences.

In the past few decades, we have learned that there is an exception to the “all neurons are born early in life” rule. Some research has shown that new neurons can, in fact, be formed during adulthood in specific brain areas. For example, the hippocampus, a brain structure important for its role in forming and maintaining memories, continues to create neurons over the course of one’s life.

The purpose of these newly generated neurons is still debated. However, numerous studies have shown that neuron formation in the hippocampus is reduced in instances of psychiatric and neurodegenerative disorders. This includes certain types of ataxia like SCA1. This is thought to contribute to changes in cognitive function and mood, though the exact mechanisms are still being determined.

Why is neurogenesis interesting for the spinocerebellar ataxias (SCAs), aren’t these neurodegenerative disorders?

Since the discovery of neurodegenerative disorders, most research has focused on symptoms and how to delay symptom onset. This view sees neurodegenerative disorders, like the SCAs, as outcomes of mid to late-life when the toxic effects of mutant proteins become suddenly rampant. However, these disorders are caused by proteins that are present from the very earliest stages of brain formation.

In 2018, researchers studying SCA1 found that neurogenesis is increased in the cerebellum of young mice. This changed how the cerebellum communicates with the rest of the brain. This suggests that cerebellar function can be affected by more than neuronal loss. It could be of wider interest in the SCAs given the cerebellar dysfunction that is common between them. No research on cerebellar neurogenesis has been performed in other SCAs by this point. However, there are some indications that neurogenesis may also be altered in SCA2.

Additionally, Huntington’s Disease, a polyglutamine repeat disorder in the same disease family as several SCAs, has been shown to have increased neurogenesis in the cortex in both young mice and prenatal babies. The combination of these recent studies has made early neuron formation an area of key interest in the study of neurodegenerative disorders.

Current theories in the field contend that while the brain can compensate for changes in neuron numbers in early life, altered neurogenesis could be creating unique brain circuitry in individuals with known disorder-causing protein mutations. These changes could make them more vulnerable to neuronal dysfunction and neurodegeneration later in life.

Evidence for changed neurogenesis in SCAs, both early and late in life, adds a new layer of consideration to what we broadly think of as a mid- to late-life neurodegenerative disease. Additional research in coming years will hopefully provide more insight into how these additional facets of neural health may inform the development of new therapies.

If you would like to learn more about neurogenesis, take a look at these resources by the Queensland Brain Insitute and News-Medical.

Snapshot written by Carrie Sheeler and edited by Dr. Chloe Soutar.

Additional References

Cvetanovic M, Hu YS, Opal P. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1. Cerebellum. 2017 Apr;16(2):340-347. doi: 10.1007/s12311-016-0794-9. PMID: 27306906; PMCID: PMC5510931.

Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development. 2017 Mar 1;144(5):905-915. doi: 10.1242/dev.140657. Epub 2017 Feb 7. PMID: 28174239; PMCID: PMC5374347.

Xia G, Santostefano K, Hamazaki T, Liu J, Subramony SH, Terada N, Ashizawa T. Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. J Mol Neurosci. 2013 Oct;51(2):237-48. doi: 10.1007/s12031-012-9930-2. Epub 2012 Dec 9. PMID: 23224816; PMCID: PMC3608734.

Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, Kassem R, Lenoir S, Agasse F, Braz BY, Liu JP, Ighil J, Tessier A, Zeitlin SO, Duyckaerts C, Dommergues M, Durr A, Humbert S. Huntington’s disease alters human neurodevelopment. Science. 2020 Aug 14;369(6505):787-793. doi: 10.1126/science.aax3338. Epub 2020 Jul 16. PMID: 32675289; PMCID: PMC7859879.

Regulating ataxin-1 expression as a therapeutic avenue for SCA1

Written by Dr. Hannah Shorrock   Edited by Dr. Hayley McLoughlin

Nitschke and colleagues identify a microRNA that regulates ataxin-1 levels and rescues motor deficits in a mouse model of SCA1

What if you could use systems already in place in the cell to regulate levels of toxic proteins in disease? This is the approach that Nitschke and colleagues took to identify the cellular pathways that regulate ataxin-1 levels. Through this strategy, the group found a microRNA, a small single-stranded RNA, called miR760, that regulates levels of ataxin-1 by directly binding to its mRNA and inhibiting expression. By increasing levels of miR760 in a mouse model of SCA1, ataxin-1 protein levels decreased and motor function improved. This approach has the potential to identify possible therapies for SCA1. It may also help identify disease-causing mutations in ataxia patients with unknown genetic causes.

Spinocerebellar Ataxia type 1 (SCA1) is an autosomal dominant disease characterized by a loss of coordination and balance. SCA1 is caused by a CAG repeat expansion in the ATXN1 gene. This results in the ataxin-1 protein containing an expanded polyglutamine tract. With the expanded polyglutamine tract, ataxin-1 is toxic to cells in the brain and leads to dysfunction and death of neurons in the cerebellum and brainstem.

As with all protein-coding genes, surrounding the protein coding region of ATXN1 gene are the 5’ (before the coding sequence) and 3’ (after the coding sequence) untranslated regions (UTRs). These regions are not translated into the final ataxin-1 protein product but are important for the regulation of this process. Important regulation factors called enhancers and repressors of translation located in 5’ and 3’ UTRs. ATXN1 has a long 5’ UTR. Genes that require fine regulation, such as growth factors, are often found to have long 5’ UTRs: the longer a 5’ UTR, the more opportunity for regulation of gene expression. The group, therefore, tested the hypothesis that the 5’ UTR is involved in regulating the expression of ataxin-1.

In their initial studies, Nitschke and colleagues identified that the ATXN1 5’UTR is capable of reducing both protein and RNA levels when placed in front of (5’ to) a reporter coding sequence. One common mechanism through which this regulation of gene expression could be occurring is the binding of microRNAs, or miRNAs, to the ATXN1 5’UTR. miRNAs are short single-stranded RNAs that form base pairs with a specific sequence to which the miRNA has a complementary sequence; this leads to regulation of expression of the mRNA to which the miRNA is bound.

3d illustration of single-strand ribonucleic acid
Artist drawing of single-stranded RNA. Photo used under license by nobeastsofierce/Shutterstock.com.

Using an online microRNA target prediction database called miRDB, the group identified two microRNAs that could be responsible for these changes in gene expression through binding to the ATXN1 5’ UTR. By increasing the expression of one of these microRNAs, called miR760, ataxin-1 protein levels were reduced in cell culture. Conversely, using a miR760 inhibitor so that the miRNA could not perform its normal functions led to increased levels of ataxin-1. Together this shows that miR760 negatively regulates ataxin-1 expression.

Continue reading “Regulating ataxin-1 expression as a therapeutic avenue for SCA1”

Identifying FDA-approved molecules to treat SCA6

Written by Dr Hannah Shorrock Edited by Dr. Larissa Nitschke

Pastor and colleagues identify FDA-approved small molecules that selectively reduce the toxic polyglutamine-expanded protein in SCA6.

Selectively targeting disease-causing genes without disrupting cellular functions is essential for successful therapy development. In spinocerebellar ataxia type 6 (SCA6), achieving this selectivity is particularly complicated as the disease-causing gene produces two proteins that contain an expanded polyglutamine tract. In this study, Pastor and colleagues identified several Food and Drug Administration (FDA) approved small molecules that selectively reduce the levels of one of these polyglutamine-containing proteins without affecting the levels of the other protein, which is essential for normal brain function. By using drugs already approved by the United States Food and Drug Administration to treat other diseases, referred to as FDA-approved drugs, the team hopes to reduce the time frame for pre-clinical therapy development.

SCA6 is an autosomal dominant ataxia that causes progressive impairment of movement and coordination. This is due to the dysfunction and death of brain cells, including Purkinje neurons in the cerebellum. SCA6 is caused by a CAG repeat expansion in the CACNA1A gene. CACNA1A encodes two proteins: the a1A subunit, the main pore-forming subunit of the P/Q type voltage-gated calcium ion channel, as well as a transcription factor named a1ACT.

The a1A subunit is essential for life. Its function is less affected by the presence of the expanded polyglutamine tract than that of a1ACT. The transcription factor, a1ACT, controls the expression of various genes involved in the development of Purkinje cells. Expressing a1ACT protein containing an expanded polyglutamine tract in mice causes cerebellar atrophy and ataxia. While reducing levels of the a1A subunit may have little effect on SCA6 disease but impact normal brain cell function, reducing levels of a1ACT may improve disease in SCA6. Therefore, Pastor and colleagues decided to test the hypothesis that selectively reducing levels of the a1ACT protein without affecting levels of the a1A protein may be a viable therapeutic approach for SCA6.

Colorful pile of medicines in blister packs which color are White, Yellow, Black and Pink pills.
By using drugs already approved by the FDA, the team hopes to reduce the time frame for pre-clinical therapy development. Photo used under license by Wanchana Phuangwan/Shutterstock.com.
Continue reading “Identifying FDA-approved molecules to treat SCA6”

Snapshot: What is Gait Analysis in Ataxia Mouse Models?

A key role of the cerebellum is to control and fine-tune coordinated movement such as walking. Although walking is an unconscious behaviour, it is actually very complex and requires many systems to work together. The specific mannerisms and patterns of coordinated movement that make up how an individual walks are called gait.

Since ataxia affects cells in the cerebellum, many ataxia patients exhibit a change in their gait. This change can reduce their mobility and be disruptive to daily life. Analyzing gait using behavioural experiments in ataxia mouse models helps researchers to better understand the disease. But how exactly does one study gait patterns in a mouse?

Black rat walking in front of white background
Photo used under license by Eric Isselee/Shutterstock.com.

Traditionally, a researcher measures gait by performing a footprint analysis that uses non-toxic water-coloured paint and a long strip of white paper. The front and back feet of the mouse are dipped into two different colours of paint. Then the mouse then runs across the paper leaving a trail of coloured footprints to be analyzed. This allows for several gait measurements to be taken. From this, the researcher can then determine how ataxia changed the mouse’s gait. For example, a researcher can look at if the mouse takes shorter strides than a healthy control or whether the mouse tends to walk in a more crooked manner.

Although easy to perform, footprint analysis is time-consuming and highly prone to error as the experimenter does all measurements with a ruler by hand after the mouse has run. Since gait is a complex action with many variables, some subtle differences may be difficult to detect this way. Luckily, researchers have developed several digital gait analysis systems, such as the DigiGait, CatWalk, and TreadScan systems. These digital gait devices make use of transparent corridors with cameras underneath that allow the researcher to record the running behaviour of the animal. Researchers then use software to automatically detect and analyze the footprints.

One lab has taken gait analysis even further. They developed a method to detect extremely subtle differences in gait that the human eye cannot detect. This technique, called LocoMouse, was developed by the Carey lab to analyze patterns of limb movements, rather than simply footprints. LocoMouse utilizes artificial intelligence to recognize and analyze the movement of limb, tail, and head position in a walking mouse.

Using this, the Carey lab has shown a significant difference between a healthy mouse and one with ataxia. Most importantly, the method also detects differences between different ataxia mouse models. By uncovering subtle differences in gait, researchers may better understand the different underlying physiological changes in the cerebellum in different ataxias.

It should be noted that a key pitfall of studying gait in mice is that they are four-legged while humans walk on two legs. This is important, and means that the variables that affect gait in a mouse will be different than those of a human. There may not be a direct correlation between gait changes in ataxia patients and gait changes in mice. That being said, gait analysis remains an important tool in the ataxia researchers’ toolbox. It will continue to provide critical insight into how ataxic physiology affects behaviour.

If you would like to learn more about gait analysis in mice, take a look at these resources by the Noldus Information Technology and Mouse Specifics Inc.

Snapshot written by Eviatar Fields and edited by Dr. Chandana Kondapalli.

Elongating expansions in HD and SCA1

Written by Dr. Marija Cvetanovic  Edited by Dr. Larissa Nitschke

Expanded CAG repeats are the cause of Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). Longer inherited CAG expansions correlate with the earlier disease onset and worse symptoms. We know from past research that these expansions are unstable and become longer from one generation to the next.

This study by Mouro Pinto and colleagues shows that repeat expansions also keep getting longer throughout life in patients affected with HD and SCA1 in many cells, including brain, muscle, and liver cells.

Expansion of CAG repeats in different human genes cause several neurodegenerative diseases. This includes Huntington’s disease (HD) and several spinocerebellar ataxias (SCAs). These long CAG repeats in disease genes tend to be unstable in the sperm and egg cells. This instability in sperm and egg cells can result in either longer repeat tracts (expansions) or shorter ones (contractions) in the children of affected patients. Unfortunately, CAG repeats more often expand than shrink. This results in a worse disease in the affected children, with earlier onset and more severe symptoms than their parents.

However, repeat instability and expansion of repeats are not confined to the sperm and egg cells. It can occur in many cells in a patient’s body. This ongoing expansion that occurs in other body cells is called somatic expansion.

Abstract background of DNA sequence
Long CAG repeats in disease genes can be unstable and expand. Photo used under license by Enzozo/Shutterstock.com.

As affected patients age, the ongoing somatic expansion, especially in the brain, may accelerate the onset of neuronal dysfunction and loss of neurons and. This may worsen the disease progression. This has been previously shown in mouse models and patients with HD. However, those studies examined expansion in only a few brain regions and tissues outside the brain (called peripheral tissues).

In this study lead by Dr. Vanessa C. Wheeler, the authors systematically examined repeat instability in 26 different regions of the brain, post-mortem cerebrospinal fluid (CSF) and nine peripheral tissues, including testis and ovaries from seven patients with HD and one patient with SCA1.

Continue reading “Elongating expansions in HD and SCA1”