A new molecule identified that controls cerebellar communication

Written by Dr. Ambika Tewari Edited by Dr. Sriram Jayabal

Targeting phosphatases in the cerebellum can correct miscommunication in multiple models of ataxia.

The cerebellum is essential for motor coordination and consists of the coordinated activity of different types of cells. Purkinje cells are one of the most fascinating cell types in the cerebellum. They have an elaborate network of branches called dendrites, where a neuron receives communication from other neurons. It is one of the most complex branching systems seen across all neurons in the entire brain. Each one of these branches has many points of contact with other branches called axons. Each axon is part of a neuronal structure that allow communication between neurons. These axons are from different cell types and allow information to be transferred to Purkinje cells.

Colourful illustration of a human brain
Targeting phosphatases in the brain could improve communication between neurons, reducing ataxia symptoms.

Due to this branching complexity, Purkinje cells receive many messages or inputs. This represents different pieces of sensory information to ensure that movements are precisely timed. Purkinje cells must integrate and process this information. This produces motor behaviors like walking, writing, playing a musical instrument, and many more. Any alteration to the processing of this information will result in cerebellum dysfunction; in fact, Purkinje cells have gained attention because they undergo progressive deterioration in most ataxias. 

Neurons, including Purkinje cells, communicate with other neurons using electrical signals known as action potentials or spikes. Firing rate, defined as the number of spikes within a defined period of time, is thought to be an important feature of this communication, which is critical for coordinating muscle movements. Therefore, a lower firing rate in Purkinje cells would signal a faulty communication between Purkinje cells and their targets. This has devastating consequences as seen in many ataxias.

For instance, in an earlier study, a group of authors found that the firing rate of Purkinje cells was decreased in mouse models of three different Spinocerebellar ataxias (SCAs): SCA1, SCA2, and SCA5. They further explored whether there was a common reason underlying the decreased firing rate. They found that a protein named Missing in Metastasis (MTSS1), was important for Purkinje cells to effectively communicate with each other. Mice engineered to have no MTSS1 protein had a decreased firing rate and difficulty walking and maintaining their balance.

In every cell in the body, including brain cells, there are numerous proteins that perform different functions. The concerted effort of all are needed for the cell to perform its intended duty. Some of these proteins are maintained in the cell in an inactive form and are activated when they are required in the cell and inhibited when they are not. This highly regulated system aims to maintain precise levels of proteins in each cell, while simultaneously conserving energy. Each cell has many ways of activating/inactivating a protein. A specialized group of proteins known as kinases and phosphatases, adds and removes phosphate groups to and from proteins respectively, thereby altering their active/inactive forms which then changes their interactions with other proteins. MTSS1 is one such protein that inhibits the activity of a group of kinases known as Src family of non-receptor tyrosine kinases (SFKs).

Continue reading “A new molecule identified that controls cerebellar communication”

Snapshot: What is a Genome-Wide Association Study (GWAS)?

A genome is a person’s complete set of DNA which provides the instructions to make and maintain their body’s functions. Throughout the entire genome, there are genetic differences between individuals known as single nucleotide polymorphisms or SNPs (pronounced “snips”). These variations may be unique or may occur in many people. Normally, these SNPs do not directly cause diseases. But SNPs can sometimes be associated with diseases, and can provide interesting and potentially important information. A genome-wide association study (GWAS) looks at the genomes of many individuals to identify these variations, with the goal of linking more of these variations to particular diseases.

a mural of A, C, T, G repeated over and over again fading off into the distance. It is the genetic code of DNA.
An art piece of repeating A, T, C, and G DNA base pairs, which encode our entire genome. Photo by Stefano on Flickr.

What can these types of studies tell us?

Scientists have gathered plenty of information from GWAS. Once these genetic variations are identified, researchers can use this information to learn more about how diseases occur and affect certain people. For example, GWAS have successfully identified genetic variations that can contribute to diabetes, obesity, and heart disease.

These kinds of studies can also help with creating personalized medicine – where different strategies can be used by doctors to treat patients based on their genetic makeup. This can allow doctors to give patients the most effective treatments, while limiting bad side effects.

How are these kinds of studies conducted?

Researchers typically look at two groups of people: individuals with the disease that is being studied, and people without the disease. DNA is obtained from people in each group to be studied, typically through a blood sample, or skin cells. In order for these studies to work, researchers try to look at as many people as possible. It is a big task, and requires not just hundreds, but thousands of participants! This allows researchers to be confident in the conclusions that they make.

In the early 2000’s, researchers mapped out the complete human genome. Since then, more genetic information from more people have been catalogued. Databases have been created that make it easier for researchers to compare new genomes to ones that have already been sequenced. This makes it quicker and easier to identify genetic variations and how they can contribute to disease.

What has GWAS taught us about SCA?

Some forms of Spinocerebellar ataxia (SCAs) are members of a larger group of diseases known as polyglutamine diseases. This group of diseases are caused by an abnormally long stretch of repetitive segments in the DNA. Scientists have identified that more repeats generally correspond with earlier disease onset, however, this is not always the case. Therefore, scientists have established that disease onset may be affected by other things, such as their environment or other parts of their genome or genetic factors. If researchers can identify these genetic factors, it could improve how these diseases are treated.

The cells in your body are equipped with machinery that helps identify and repair damage to DNA that occurs thousands of times a day from normal cellular processes or the environment (such as sun damage). A few years ago, GWAS revealed that genes involved in these pathways could affect SCA disease onset, and this opened up a new and exciting route of discovery for scientists! Many scientists are currently exploring this route, and more will be done in the coming years to see if we can find new therapies.

If you are interested in reading more about this GWAS report, check out our summary on the paper.

If you would like to learn more about Genome-Wide Association Studies, take a look at these resources by the National Human Genome Research Institute and MedlinePlus.

Snapshot written by Dr. Claudia Hung, edited by Dr. Ray Truant and Celeste Suart.

Discovery of a new molecular pathway in spinocerebellar ataxia 17

Written by Dr. Sriram Jayabal Edited by Dr. Ray Truant

A potential new pathway for SCA17: gene therapy that in mice restores a critical protein deficit protects brain cells from death in SCA17.

Neurodegenerative ataxias are a group of brain disorders that progressively affect one’s ability to make fine coordinated muscular movements. This makes is difficulty for people with ataxia to walk. Spinocerebellar ataxia type 17 (SCA17) is one such late-onset neurological disease which typically manifests at mid-life. The life expectancy after symptoms first appear is approximately 18-20 years. Besides ataxia, SCA17 can cause a number of other symptoms ranging from dementia (loss of memory), psychiatric disorders, dystonia (uncontrollable contraction of muscles), chorea (unpredictable muscle movements), spasticity (tightened muscles), and epilepsy.

Brain imaging and post-mortem studies have identified that the cerebellum (often referred to as the little brain) is one of the primary brain regions that is affected. That being said, other brain regions such as the cerebrum (cortex or the big brain) and brainstem (distal part of the brain found after the cerebellum) could undergo degeneration. Further, the genetic mutation that leads to SCA17, is a CAG-repeat expansion mutation, similar to several other forms of ataxias. In most other ataxias, where the function of the mutated protein is unknown. However in SCA17, the function of the mutated protein, TATA-box binding protein, is very well understood. Despite this unique advantage, we are yet to completely understand how the mutant gene leads to SCA17. This is why current treatment strategies often focus on treating the symptoms, but not the underlying cause.

person holding laboratory flask
Photo by Chokniti Khongchum on Pexels.com

SCA17 mutation leads to Purkinje cell death

Researchers from China have shed more light on how the mutant gene causes SCA17. TATA-box binding protein is a transcription initiation factor is a protein that turns on the production of RNA from genes. It is widely found across the brain including the cerebellum. TATA-box binding protein controls the amount of protein manufactured from several genes. This raised a very important question: pertinent not only to SCA17 but also more generally to several SCAs – why is that the cerebellar neurons, especially the most sensitive neuron, the Purkinje cells die?

Continue reading “Discovery of a new molecular pathway in spinocerebellar ataxia 17”

Snapshot: What are Astrocytes?

The human brain contains about 170 billion cells. Half of these are neurons and the other half are lesser known cells called glia. Glial cells include astrocytes, oligodendrocytes and microglia. Astrocytes tile the entire brain and interact closely with neurons. Astrocytes are very important for neuronal function, in many ways playing a parenting-like role. They provide energy and support to neurons, and they clean after them. Astrocytes make sure that neuronal surroundings are “just right” for optimal function of neurons. They can also actively influence neuronal activity.

An astrocyte cell grown in tissue culture stained with antibodies to GFAP and vimentin. The GFAP is coupled to a red fluorescent dye and the vimentin is coupled to a green fluorescent dye. Both proteins are present in large amounts in the intermediate filaments of this cell, so the cell appears yellow, the result of combining strong red and green signals. The blue signal is DNA revealed with DAPI, and shows the nucleus of the astrocyte and of other cells in this image.
An astrocyte cell imaged using a microscope and colored antibodies. Imaged courtesy of Wikimedia.

Similar to neurons, there are important differences in astrocytes from different brain regions. For instance, in the cerebellum there are about 5 times more neurons than astrocytes. Meanwhile in the cortex there are 10 times more astrocytes than neurons. In addition, astrocytes in the cerebellum and hippocampus (a brain region that plays an important role in memory) express different sets of proteins. These brain region differences can contribute to the role that astrocytes play in neuronal function in health as well as in disease.

Bergman Glia: An Important type of Astrocyte in Ataxia

In the cerebellum, there is a special type of astrocyte called Bergman glia that are very closely connected with Purkinje cells, neurons that are often vulnerable in ataxia. In fact, the relationship between Purkinje cells and Bergmann glia is often referred to as the most intimate neuron-astrocyte relationship in the brain. This is important as in brain injury and neurodegenerative diseases astrocytes undergo process called gliosis that changes their function. Gliosis can make them either more neuroprotective (helpful) or harmful.

For instance, when there is disease Bergmann glia can increase their support to help Purkinje neurons maintain their function and delay onset of disease symptoms. But also, Bergmann glia can become harmful worsening the dysfunction of Purkinje neurons and more severe disease symptoms.

Bergmann glia  help support Purkinje cells early on in ataxia, but as the disease progresses they can actual make symptoms worse.
Illustrating intimate relationship between Bergmann glia (BG) and Purkinje cells (PC). Bergmann glia may increase their support to Purkinje cells early in disease. However, they can become harmful with disease progression. Image desgined by Marija Cvetanovic.

It is important to learn more about how astrocytes are altered in ataxia for these reasons. We can use that knowledge about astrocytes to develop novel therapies to delay onset of ataxia symptoms and their severity.

If you would like to learn more about astrocytes, take a look at these resources by Khan Academy and Tempo Bioscience.

Snapshot written by Dr. Marija Cvetanovic and edited by David Bushart.